T. Kallio, S. Alajoki, V. Pore, M. Ritala, J. Laine et al., Antifouling properties of TiO 2 : Photocatalytic decomposition and adhesion of fatty and rosin acids, sterols and lipophilic wood extractives, Colloids Surf. A Physicochem. Eng. Asp, vol.291, pp.162-176, 2006.

T. Verdier, A. Bertron, B. Erable, and C. Roques, Bacterial Biofilm Characterization and Microscopic Evaluation of the Antibacterial Properties of a Photocatalytic Coating Protecting Building Material, vol.8, p.93, 2018.

M. Al-ahmad, F. A. Abdul-aleem, A. Mutiri, and A. Ubaisy, Biofuoling in RO membrane systems Part 1: Fundamentals and control, Desalination, vol.132, pp.173-179, 2000.

S. Natarajan, D. S. Lakshmi, V. Thiagarajan, P. Mrudula, N. Chandrasekaran et al., Antifouling and anti-algal effects of chitosan nanocomposite (TiO 2 /Ag) and pristine (TiO 2 and Ag) films on marine microalgae Dunaliella salina, J. Environ. Chem. Eng, vol.6, pp.6870-6880, 2018.

R. A. Damodar, S. J. You, and H. H. Chou, Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes, J. Hazard. Mater, vol.172, pp.1321-1328, 2009.

A. Mills, N. Elliott, I. P. Parkin, S. A. O'neill, and R. J. Clark, Novel TiO 2 CVD films for semiconductor photocatalysis, J. Photochem. Photobiol. A Chem, vol.151, pp.171-179, 2002.

H. A. Foster, I. B. Ditta, S. Varghese, and A. Steele, Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity, Appl. Microbiol. Biotechnol, vol.90, pp.1847-1868, 2011.

X. Chen and S. S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chem. Rev, vol.107, pp.2891-2959, 2007.

A. Kleiman, J. M. Meichtry, D. Vega, M. I. Litter, and A. Márquez, Photocatalytic activity of TiO 2 films prepared by cathodic arc deposition: Dependence on thickness and reuse of the photocatalysts, Surf. Coat. Technol, vol.382, 2020.

R. Malik, V. K. Tomer, N. Joshi, T. Dankwort, L. Lin et al., Au-TiO 2 -Loaded Cubic g-C 3 N 4 Nanohybrids for Photocatalytic and Volatile Organic Amine Sensing Applications, ACS Appl. Mater. Interfaces, vol.10, pp.34087-34097, 2018.

V. O. Odhiambo, A. Ongarbayeva, O. Kéri, L. Simon, and I. M. Szilágyi, Synthesis of TiO 2 /WO 3 Composite Nanofibers by a Water-Based Electrospinning Process and Their Application in Photocatalysis, Nanomaterials, vol.2020

J. Watté, M. Van-zele, and K. De-buysser, Van Driessche, I. Recent Advances in Low-Temperature Deposition Methods of Transparent, Photocatalytic TiO 2 Coatings on, Polymers, vol.8, p.131, 2018.

L. G. Devi and S. G. Kumar, Influence of physicochemical-electronic properties of transition metal ion doped polycrystalline titania on the photocatalytic degradation of Indigo Carmine and 4-nitrophenol under UV/solar light, Appl. Surf. Sci, vol.257, pp.2779-2790, 2011.

M. Wu, P. Wu, T. Lin, and T. Lin, Photocatalytic performance of Cu-doped TiO 2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment, Appl. Surf. Sci, vol.430, pp.390-398, 2018.

P. Navabpour, K. Cooke, and H. Sun, Photocatalytic Properties of Doped TiO 2 Coatings Deposited Using Reactive Magnetron Sputtering, vol.7, 2017.

W. Xie, R. Li, and Q. Xu, Enhanced photocatalytic activity of Se-doped TiO 2 under visible light irradiation, Sci. Rep, vol.8, 2018.

M. Nasr, L. Soussan, R. Viter, C. Eid, R. Habchi et al., High photodegradation and antibacterial activity of BN-Ag/TiO 2 composite nanofibers under visible light, New J. Chem, vol.42, pp.1250-1259, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01696995

H. Zhang, X. Yu, J. A. Mcleod, and X. Sun, First-principles study of Cu-doping and oxygen vacancy effects on TiO 2 for water splitting, Chem. Phys. Lett, vol.612, pp.106-110, 2014.

V. Vishwakarma, J. Josephine, R. P. George, R. Krishnan, S. Dash et al., Antibacterial copper-nickel bilayers and multilayer coatings by pulsed laser deposition on titanium, Biofouling, vol.25, pp.705-710, 2009.

S. Rtimi, O. Baghriche, C. Pulgarin, J. C. Lavanchy, and J. Kiwi, Growth of TiO 2 /Cu films by HiPIMS for accelerated bacterial loss of viability, Surf. Coat. Technol, vol.232, p.22, 2013.

J. F. Schumacher, M. L. Carman, T. G. Estes, A. W. Feinberg, L. H. Wilson et al., Engineered antifouling microtopographies-Effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva, Biofouling, vol.23, pp.55-62, 2007.

M. Carve, A. Scardino, and J. Shimeta, Effects of surface texture and interrelated properties on marine biofouling: A systematic review, Biofouling, vol.35, pp.597-617, 2019.

F. W. Myan, J. Walker, and O. Paramor, The interaction of marine fouling organisms with topography of varied scale and geometry: A review, Biointerphases, vol.8, pp.1-13, 2013.

S. Biswas, C. Jiménez, A. Khan, S. Forissier, A. K. Kar et al., Structural study of TiO 2 hierarchical microflowers grown by aerosol-assisted MOCVD, CrystEngComm, vol.19, pp.1535-1544, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01758858

J. Resende, C. Jiménez, N. D. Nguyen, and J. Deschanvres, Magnesium-doped cuprous oxide (Mg: Cu 2 O) thin films as a transparent p-type semiconductor, Phys. Status Solidi, vol.213, pp.2296-2302, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02012994

C. Villardi-de-oliveira, A. Alhussein, J. Creus, F. Schuster, M. L. Schlegel et al., Bifunctional TiO 2 /AlZr Thin Films on Steel Substrate Combining Corrosion Resistance and Photocatalytic Properties, Coatings, vol.9, 2019.

F. Faÿ, D. Carteau, and I. Linossier, Vallée-Réhel, K. Evaluation of anti-microfouling activity of marine paints by microscopical techniques, Prog. Org. Coat, vol.72, pp.579-585, 2011.

L. D. Druehl and S. I. Hsiao, Axenic culture of Laminariales in defined media, Phycologia, vol.8, pp.47-49, 1969.

C. Martens, K. Vandepoele, J. Gillard, M. Heijde, C. Bowler et al., Genome-wide analysis of the diatom cell cycle unveils a novel cyclin gene family involved in environmental signalling, Plant Biotechnol, p.17, 2010.

M. D. Machado and E. V. Soares, Development of a short-term assay based on the evaluation of the plasma membrane integrity of the alga Pseudokirchneriella subcapitata, Appl. Microbiol. Biotechnol, vol.95, pp.1035-1042, 2012.

S. Horzum, S. Gürakar, and T. Serin, Investigation of the structural and optical properties of copper-titanium oxide thin films produced by changing the amount of copper, Thin Solid Films, vol.685, pp.293-298, 2019.

E. Celik, Z. Gokcen, N. F. Ak-azem, M. Tanoglu, and O. F. Emrullahoglu, Processing, characterization and photocatalytic properties of Cu doped TiO 2 thin films on glass substrate by sol-gel technique, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol, vol.132, pp.258-265, 2006.

S. Saha, S. B. Hamid, and T. H. Ali, Catalytic evaluation on liquid phase oxidation of vanillyl alcohol using air and H 2 O 2 over mesoporous Cu-Ti composite oxide, Appl. Surf. Sci, vol.394, pp.205-218, 2017.

H. E. Swanson, E. Tatge, and R. K. Fuyat, Standard X-ray Diffraction Powder Patterns, 1953.

G. Busca, G. Ramis, J. M. Amores, V. S. Escribano, and P. Piaggio, FT Raman and FTIR studies of titanias and metatitanate powders, J. Chem. Soc. Faraday Trans, vol.90, pp.3181-3190, 1994.

H. Wang, Y. Li, X. Ba, L. Huang, and Y. Yu, TiO 2 thin films with rutile phase prepared by DC magnetron co-sputtering at room temperature: Effect of Cu incorporation, Appl. Surf. Sci, vol.345, pp.49-56, 2015.

H. Solache-carranco, G. Juárez-díaz, M. Galván-arellano, J. Martínez-juárez, R. G. Romero-paredes et al., Raman scattering and photoluminescence studies on Cu 2 O, Proceedings of the 2008 5th International Conference on Electrical Engineering, pp.421-424, 2008.

L. Bergerot, C. Jiménez, O. Chaix-pluchery, L. Rapenne, and J. Deschanvres, Growth and characterization of Sr-doped Cu 2 O thin films deposited by metalorganic chemical vapor deposition, Phys. Status Solidi, vol.212, pp.1735-1741, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02012954

A. Sanson, A first-principles study of vibrational modes in Cu 2 O and Ag 2 O crystals, Solid State Commun, vol.151, pp.1452-1454, 2011.

T. Maruyama, Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate, Sol. Energy Mater. Sol. Cells, vol.56, pp.85-92, 1998.

F. A. Akgul, G. Akgul, N. Yildirim, H. E. Unalan, and R. Turan, Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films, Mater. Chem. Phys, vol.147, pp.987-995, 2014.

M. Sahu and P. Biswas, Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor, Nanoscale Res. Lett, 2011.

M. Mikami, S. Nakamura, O. Kitao, and H. Arakawa, Lattice dynamics and dielectric properties of (formula presented) anatase: A first-principles study, Phys. Rev. B Condens. Matter Mater. Phys, vol.66, pp.1-6, 2002.

M. Gruji?-broj?in, M. J. ??epanovi?, Z. D. Doh?evi?-mitrovi?, I. Hini?, B. Matovi? et al., Infrared study of laser synthesized anatase TiO 2 nanopowders, J. Phys. D Appl. Phys, vol.38, pp.1415-1420, 2005.

C. Dette, M. A. Pérez-osorio, C. S. Kley, P. Punke, C. E. Patrick et al., TiO 2 anatase with a bandgap in the visible region, Nano Lett, vol.14, pp.6533-6538, 2014.

M. Cheon, B. Jung, S. J. Kim, J. I. Jang, and S. Y. Jeong, High-quality epitaxial Cu 2 O films with (111)-terminated plateau grains obtained from single-crystal Cu (111) thin films by rapid thermal oxidation, J. Alloys Compd, vol.801, pp.536-541, 2019.

J. Tauc and A. Menth, States in the gap, J. Non-Cryst. Solids, pp.569-585, 1972.

M. Heinemann, B. Eifert, and C. Heiliger, Band structure and phase stability of the copper oxides Cu 2 O, CuO, and Cu 4 O 3, Phys. Rev. B Condens. Matter Mater. Phys, vol.87, pp.3-7, 2013.

J. Navas, A. Sánchez-coronilla, T. Aguilar, N. C. Hernández, M. Desireé et al., Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO 2, Phys. Chem. Chem. Phys, vol.16, pp.3835-3845, 2014.

F. D. Duminica, F. Maury, and R. Hausbrand, Growth of TiO 2 thin films by AP-MOCVD on stainless steel substrates for photocatalytic applications, Surf. Coat. Technol, vol.201, pp.9304-9308, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00806202

M. Bideau, B. Claudel, L. Faure, and H. Kazouan, The photo-oxidation of acetic acid by oxygen in the presence of titanium dioxide and dissolved copper ions, J. Photochem. Photobiol. A Chem, vol.61, pp.269-280, 1991.

V. Brezová, A. Bla?ková, E. Boro?ová, M. ?eppan, and R. Fiala, The influence of dissolved metal ions on the photocatalytic degradation of phenol in aqueous TiO 2 suspensions, J. Mol. Catal. A. Chem, vol.98, pp.109-116, 1995.

M. J. López-muñoz, J. Aguado, and B. Rupérez, The influence of dissolved transition metals on the photocatalytic degradation of phenol with TiO 2, Res. Chem. Intermed, vol.33, pp.377-392, 2007.

T. Morikawa, Y. Irokawa, and T. Ohwaki, Enhanced photocatalytic activity of TiO 2 ?xNx loaded with copper ions under visible light irradiation, Appl. Catal. A Gen, vol.314, pp.123-127, 2006.

H. Reiche, W. W. Dunn, and A. J. Bard, Heterogeneous photocatalytic and photosynthetic deposition of copper on Titanium dioxide and tungsten(VI) oxide powders, J. Phys. Chem, vol.83, pp.2248-2251, 1979.

K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, and A. Itaya, Heterogeneous Photocatalytic Decomposition of Phenol over TiO 2 Powder, Bull. Chem. Soc. Jpn, vol.58, 1985.

Z. Jin, X. Zhang, Y. Li, S. Li, and G. Lu, 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO 2 photocatalyst under visible light irradiation, Catal. Commun, vol.8, pp.1267-1273, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-01027514

V. B. Damodaran and S. N. Murthy, Bio-inspired strategies for designing antifouling biomaterials, Biomater. Res, vol.20, pp.1-11, 2016.

G. Borkow and J. Gabbay, Copper as a biocidal tool, Curr. Med. Chem, vol.12, pp.2163-2175, 2005.

Y. Liu, X. Suo, Z. Wang, Y. Gong, X. Wang et al., Developing polyimide-copper antifouling coatings with capsule structures for sustainable release of copper, Mater. Des, vol.130, pp.285-293, 2017.

X. Wei, Z. Yang, Y. Wang, S. L. Tay, and W. Gao, Polymer antimicrobial coatings with embedded fine Cu and Cu salt particles, Appl. Microbiol. Biotechnol, vol.98, pp.6265-6274, 2014.

A. J. Scardino, J. Guenther, and R. De-nys, Attachment point theory revisited: The fouling response to a microtextured matrix, Biofouling, vol.24, pp.45-53, 2008.

M. E. Callow, Fouling algae from 'in-service' ships, vol.29, pp.351-358, 1986.

F. Cassé and G. W. Swain, The development of microfouling on four commercial antifouling coatings under static and dynamic immersion, Int. Biodeterior. Biodegrad, vol.57, pp.179-185, 2006.

É. Pelletier, C. Bonnet, and K. Lemarchand, Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints, Int. J. Mol. Sci, vol.10, pp.3209-3223, 2009.

K. A. Zargiel and G. W. Swain, Static vs dynamic settlement and adhesion of diatoms to ship hull coatings, Biofouling, vol.30, pp.115-129, 2014.

K. A. Whitehead and J. Verran, The effect of surface topography on the retention of microorganisms, Food Bioprod. Process, vol.84, pp.253-259, 2006.

Y. Cui, W. Yuan, and J. Cao, Effects of surface texturing on microalgal cell attachment to solid carriers, Int. J. Agric. Biol. Eng, vol.6, pp.44-54, 2013.

S. Brooks and M. Waldock, The use of copper as a biocide in marine antifouling paints, Adv. Mar. Antifouling Coat. Technol, pp.492-521, 2009.

S. Masmoudi, N. Nguyen-deroche, A. Caruso, H. Ayadi, A. Morant-manceau et al., Cadmium, copper, sodium and zinc effects on diatoms: From heaven to hell-A review, Cryptogam. Algol, vol.34, pp.185-225, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02304118

L. N. Brown, M. G. Robinson, B. D. Hall, and B. Columbia, Mechanisms for cooper tolerance in Amphora coffeaeformis-internal and external binding, Mar. Biol, vol.97, pp.581-586, 1988.

M. Real, I. Muñoz, H. Guasch, E. Navarro, and S. Sabater, The effect of copper exposure on a simple aquatic food chain, Aquat. Toxicol, vol.63, pp.283-291, 2003.

S. Gonçalves, M. Kahlert, S. F. Almeida, and E. Figueira, Assessing Cu impacts on freshwater diatoms: Biochemical and metabolomic responses of Tabellaria flocculosa (Roth) Kützing, Sci. Total Environ, vol.625, pp.1234-1246, 2018.

A. L. Cordeiro, M. E. Pettit, M. E. Callow, J. A. Callow, and C. Werner, Controlling the adhesion of the diatom Navicula perminuta using poly(N-isopropylacrylamide-co-N-(1-phenylethyl) acrylamide) films, Biotechnol. Lett, vol.32, pp.489-495, 2010.

A. Willis, M. Eason-hubbard, O. Hodson, U. Maheswari, C. Bowler et al., Adhesion molecules from the diatom Phaeodactylum tricornutum (Bacillariophyceae): Genomic identification by amino-acid profiling and in vivo analysis, J. Phycol, vol.50, pp.837-849, 2014.

V. Martin-jézéquel and B. Tesson, Phaeodactylum tricornutum polymorphism: An overview, Adv. Algal Cell Biol. Walter Gruyter, pp.43-80, 2012.

I. Kagalou, P. Beza, C. Perdikaris, and D. Petridis, Effects of copper and lead on microalgae(Isochrysis galbana) growth, Fresenius Environ. Bull, vol.11, pp.233-236, 2002.

K. Manimaran, P. Karthikeyan, S. Ashokkumar, V. Ashok-prabu, and P. Sampathkumar, Effect of copper on growth and enzyme activities of marine diatom, odontella mobiliensis, Bull. Environ. Contam. Toxicol, vol.88, pp.30-37, 2012.

S. Morin, A. S. Lambert, E. P. Rodriguez, A. Dabrin, M. Coquery et al., Changes in copper toxicity towards diatom communities with experimental warming, J. Hazard. Mater, vol.334, pp.223-232, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01720423

S. Gagneux-moreaux, R. P. Cosson, P. Bustamante, and C. Moreau, Growth and metal uptake of microalgae produced using salt groundwaters from the Bay of Bourgneuf, Aquat. Living Resour, vol.19, pp.247-255, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00963993

Y. Wei, N. Zhu, M. Lavoie, J. Wang, H. Qian et al., Copper toxicity to Phaeodactylum tricornutum: A survey of the sensitivity of various toxicity endpoints at the physiological, biochemical, molecular and structural levels, BioMetals, vol.27, pp.527-537, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01651532

G. F. Daniel and A. H. Chamberlain, Copper immobilization in fouling diatoms, vol.24, pp.229-244, 1981.