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Abstract

Shared parking firms offer a double-sided platform for parking space sharing. Many of

these firms provide differentiated service levels to both suppliers and buyers. This new

phenomenon in the parking industry materialized thanks to recent innovations in IoT-

enabled automation and electric vehicle charging technologies. We study shared parking

firms. Specifically, we formulate the firm’s location and quality decision problem by using

a multiplicative interaction model with competition. A non-cooperative game renders the

optimized quality levels and location selections at Nash equilibrium in the presence of

competition. We illustrate managerial insights with a small-sized problem. For industry

practitioners, we propose a tailored branch and bound based exact algorithm and a

problem-specific genetic algorithm for large-sized problems. Simulated computational

results confirm the effectiveness and efficiency of the proposed shared-parking decision

support model.

Keywords: Sharing Economy, Shared Parking, Electric Vehicle, Sharing Decision

Support

1. Introduction

New transportation business models have emerged in recent years, thanks in part to

increasing popularity of sharing economy and related enabling technologies. Companies

that provide shared transportation and parking services such as Uber, Lyft, Onepark,

and Pavemint have greatly reshaped the transportation economy and civil infrastructure

development in many countries. Moreover, an increasing number of property owners
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have started sharing their parking spaces or membership-exclusive parking facilities to

the public via shared parking platforms. The benefits of sharing parking spaces include

reduction in the overall parking space requirement and increased revenue for the prop-

erty owners. With competition from existing public parking providers, emerging shared

parking service providers face two strategic decisions that include (1) location selection

and (2) service quality choice.

The first decision on location selection is an important classical problem for shared

parking firms [1]. Facing competition, companies such as Onepark and Pavemint must

consider where to add new shared parking spaces and/or build parking facilities along

with an incentive policy and differentiated service levels. The main business model in-

volves incentivizing property owners to share their parking resources on the platform. At

the same time, the platform owner also invests in these shared parking properties by pro-

viding automated equipment on site (e.g., check-in-out facilities, automated mechanics,

video surveillance, sensors and EV charging devices). Unlike classical sharing economy

platforms such as Uber or airBnb, there is a substantial (initial) investment requirement

for shared parking platform to operate and grow.

The second decision on service quality level has not been considered in published

literature on parking marketplace management, to the best of our knowledge. Indeed, it is

not until recently that parking service quality has become an important decision because

of advances in IoT and electric vehicle technologies. Most shared parking companies

not only provide the platform that bridges buyers and suppliers, but also install check-

point facilities, EV charging devices, sensors and surveillance equipments upon agreement

with the parking space owner. This practice enables the shared parking company to

differentiate its service quality. This new phenomenon related to parking service quality

choice raises many questions that largely remain unanswered, including its impact on the

classical location problem, service quality decision problem, and pricing and competition

strategy problems.

We study both the decision problems for a shared parking firm as a competitive loca-

tion problem (CLP). The set of available parking facility locations is formed from shared

private parking spaces. Service quality differentiation is enabled by the installation of

onsite equipments/devices that are connected via an IoT-based sensor system infrastruc-

ture. This IoT-based system allows for tracking and tracing vehicles as well as provide
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information on connected parking facilities such as charging stations and various mechan-

ical devices. It enables the service provider to design and differentiate the quality levels

of the parking facilities. On-site electric charging devices offer various levels of charging

speed/time. Video and sensor based surveillance of parking facility improves service qual-

ity in terms of parking security. Automated checkpoints with RFID and mobile payment

facilities improve convenience and help reduce customer wait time.

Existing studies on CLP for parking marketplace management mainly focus on the

location decision. However, it is important to simultaneously consider service quality

and facility location as both impact a firm’s long-term market share. Considering only

location may lead to sub-optimality, especially when service quality is measurable and

can be controlled. Over the past few years, a number of articles on other industries (e.g.,

[2–8]) have addressed competitive facility location and design problems in a continuous

space by taking into account the service quality decisions of facilities. The quality of a

facility is usually determined by the facility size, variety, convenience, maintenance effort,

technology level, and other case-specific factors. We consider parking service quality with

similar factors. For example, with additional electric charging devices, service can be

differentiated by charging speed and quality. In addition, [9–11] considered competitive

facility location and design in discrete space. The above studies generalize previous

work on competitive facility location by simply assuming that the quality of the existing

facilities as given. Although more realistic, response from existing competitors is not

considered by any of these studies. As mentioned in [12], considering the response from

competitors is a natural extension of CLP. Furthermore, we assume that the probability

of a customer choosing a parking site is proportional to the utility of patronizing it. We

then adopt a multiplicative interaction (MCI) model [13] to express the probability of a

customer patronizing either a new parking site or an existing one.

The contributions of this study are summarized below.

i) We consider a new shared parking facility location and quality decision problem.

ii) We present a novel decision model for a shared parking firm that faces competi-

tion, competitors’ reactions, and limited budget, by adopting the MCI model. The

problem is shown to be NP-hard.

iii) We propose an iterative solution framework composed of two main phases (parking

location and quality determination) to solve the proposed model. Given a set of
3



new open parking facilities, the competitive decision process occurring among new

and existing parking facilities is modeled as a non-cooperative game. The service

quality of new and existing parking facilities is determined by the Nash equilibrium.

iv) We develop a tailored B&B algorithm and problem-specific genetic algorithm (GA)-

based method to obtain the best set of open parking facilities. Computational

results on 320 randomly generated instances under different structures show the

effectiveness and efficiency of the proposed approaches.

The remainder of the paper is structured as follows. We introduce and formulate

the model in Section 2. In Section 3, we first present an iterative solution framework to

solve the proposed problem. Two tailored iterative framework-based approaches: B&B

algorithm and GA-based method are developed. Numerical experiments are provided to

draw managerial insights and to validate the effectiveness and efficiency of the proposed

approaches in Section 4. We conclude and identify future research directions in Section

5.

2. The Model

Although advanced technologies and decision support tools have been developed, to-

day it is still considered analytically challenging to optimize location decision in a competi-

tive environment. Competitive location problems may involve not only location decisions,

but also other decisions such as quality design and/or pricing. Hotelling’s pioneering work

on duopoly in a linear market [14] provides an important foundation for today’s research

on competitive location. The competitive location problems can be categorized as in a

continuous space or in a discrete space setting according to whether facilities are located

on a plane or on a network (a set of discrete points). For competitive location in a con-

tinuous space, [15] studied a single facility location problem that considers competition

from another facility. Later, finding the optimal location of a single new facility with the

analysis of the market share function was discussed in [16] and [17]. [18] presented a ge-

ographic information system (GIS) based competitive location model for a single facility

to be located in continuous space. [19] extended this by considering multiple competitive

facilities and developed several heuristic algorithms. The earliest contributions to com-

petitive location in discrete space were made by [20, 21]. Following the work of [22, 23],

a number of studies have addressed discrete multi-facility location problems in the retail
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industry (e.g., [24], [25–27], [28], [29], [30]). Many highlighted competitive location mod-

els are available in the literature. We refer to the survey papers [31], [32], [33], and [34]

for an overview.

A few published research articles consider competitors’ responses in CLP. [35] is the

first to consider a firm that chooses to build facilities in a network of either competitive or

oligopolistic environment. An economic equilibrium model was developed to describe the

competition on the network in terms of equilibrium prices, demands, production levels

and shipments. A variational inequality was proposed to specify its equilibrium. [36]

considered the location decision and quality design of a new facility in continuous space

with the objective of maximizing facility profit. An interval Branch and Bound (B&B)

based two-stage algorithm was developed as a solution. Later, [37] developed a game

theoretic model to analyze a market situation with two firms entering a new market

where customers consider one of the suppliers according to travel distance and service

quality. Both firms maximize market share by deciding on the location on a plane and

service quality. Recently, [38] established a bi-level programming model to deal with

a Huff-like competitive location and design problem where the leader desires to locate

a facility such that its profit is maximized after the competitor locates its facility. It

is assumed that the follower also considers maximizing its own profit. These studies

mainly focus on optimally locating a single or two new facilities and assume that the

budget for opening facilities and improving service quality is unlimited. While none of

the published CLP research address the parking facility and quality problem, we fill the

void by considering CLP for solving the emerging shared parking problem.

In summary, we consider that a shared parking firm is to locate new parking facilities

in a network and simultaneously determine the service quality of each parking site to

maximize its total profit. In the network, there are existing parking facilities that belong

to other parking service firms that may or may not be shared. We assume that these

existing parking facilities can improve their quality to compete for market share with

new ones but their locations are given and fixed because relocation is expensive. Both

the entrant and the existing firm have limited budget. A customer is free to choose any

parking to patronize, and two utility factors that include parking quality and travel cost

affect her/his location decision. The probability of a customer choosing a parking site

is proportional to the patronizing utility. We adopt a multiplicative interaction (MCI)
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model [13] to express the probability of a customer patronizing either a new parking site

or an existing one. Note that parking owners/members do not pay for using his/her own

parking facilities.

2.1. Problem Description

Let G = (N,A) be a network that includes a set of nodes N = P ∪ C ∪ D and a

set of arcs A. The nodes in sets P , C and D respectively represent the potential sites

for opening new shared Parking service facilities, Competing parking service facilities,

and Demand points (Figure 1). The shortest distance between the two nodes, i, j ∈ N ,

represented by an arc in A is denoted by dij.

: parking facility location {j}

: parking demand point    {i} ij: shared parking usage

C C

C

C

C

C

C : competing facility

Figure 1: Shared parking location selection with discrete demand points

We consider a general framework that models a set of available parking candidates

and decides which to include in the service network and at what quality level. Typical

candidates can be a level or a block of parking spaces from a multiple level parking

complex. Figure 1 illustrates the mechanism of shared parking services. In the figure, the

size of P and C show that the density of available shared parking space may vary from

area to area. The grey circle linking square P implies usage of private parking and the

circle linking any two different nodes implies the usage of shared parking from a demand

spot. The availability of parking spaces for sharing could be an issue because it directly

affects the supply.
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Suppose that a shared parking service firm has a limited budget B and is attempting

to open one or more new parking facilities from a finite set of potential candidate locations

P that are previously privately owned. The fixed cost for constructing/renovating the

parking facility at site j is denoted by fj, j ∈ P . There is a set of existing parking facilities

C ⊂ N(|C| = m) that belongs to other parking service firms with service quality αj at

parking j ∈ C. For simplicity, we assume that m existing parking facilities belong to m

different competitors respectively. However, the proposed model and algorithms given

later can be easily extended to the case where some competitors have multiple facilities.

The potential parking service demand at demand zone i ∈ D is denoted by wi. When

entering the market, the entrant firm also needs to decide the service quality at each site,

denoted by yj, j ∈ P , and carefully take into account possible responses from existing

competitors.

We assume that the service quality level of each new parking or the quality improve-

ment level of each existing parking is taken from a discrete set. This assumption does not

lead to a loss of generality but simplifies the solution to the studied problem. The entrant

firm needs to decide the service quality at each site j ∈ P , denoted by yj, and carefully

take into account the responses from existing competitors. Each existing parking facility

j ∈ C can improve its service quality to compete for market share subject to a limited

budget Bj. Let zj be the increased service quality, j ∈ C. Note that reallocating existing

facilities is not allowed because it is expensive. We also assume that the service quality

of both new and existing parking facilities are bounded and the maximum service quality

is denoted as qm,m ∈ P ∪D.

We assume that a potential customer whose destination is zone i, ∀i ∈ D is free to

decide where to purchase parking service, and her/his decision is mainly affected by two

factors: the service quality at facility j,∀j ∈ P ∪ C denoting its service level and the

travel distance from node i to facility j, i.e., dij. The market share of each parking is

determined by the utility its customers gain from purchasing the service provided by the

parking facility. The utility of a customer whose destination is demand zone i patronizing

parking facility j, denoted by uij, increases in the service quality and decreases in the

travel distance. Nevertheless, for facility j,∀j ∈ P ∪ C, the higher the service quality

provided, the more the cost required. For simplicity, it is assumed that customers with

the destination zone i ∈ D perceive the same utility [12]. According to [9], the following
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utility expressions (1) and (2) for new and existing parking facilities are defined:

uij = yβ1j d
−β2
ij , i ∈ D, j ∈ P (1)

uij = (αj + zj)
β1d−β2ij , i ∈ D, j ∈ C (2)

where β1 and β2 are non-negative values, respectively representing the sensitivity of cus-

tomers to quality and travel distance. For practical applications, these are estimated

based on available real data. As defined above, yj and zj are decision variables for the

service quality of new and existing parking, respectively. We note that dij in (1) is a

variable for the new parking’s location, while that in (2) is a parameter since the location

of an existing parking is known.

Let S ⊆ P denote the set of selected sites for locating new parking facilities. Then,

the probability of a customer i ∈ D to patronize facility j ∈ S ∪ C, denoted by pij, is

proposed according to an MCI-type model [13] as follows:

pij =
uij∑

l∈C uil +
∑

k∈S uik
, i ∈ D, j ∈ S (3)

pij =
uij∑

l∈C uil +
∑

k∈S uik
, i ∈ D, j ∈ C (4)

The market share or customer flow whose destination is demand zone i, i ∈ D, cap-

tured by a parking j, j ∈ S ∪ C, is thus written as follows:

Mij = wipij, i ∈ D, j ∈ S ∪ C (5)

Then, the profit obtained by parking j, j ∈ S ∪ C can be defined as follows:

πj = F (
∑
i∈D

Mij)− (fj + φ(yj)), j ∈ S (6)

πj = F (
∑
i∈D

Mij)− φ(zj), j ∈ C (7)

where F is a strictly increasing function which transforms the market share into expected

sales. Following [2], F is taken as a linear function, i.e., F (
∑

i∈DMij) = ρ
∑

i∈DMij,

where ρ is the unit profit obtained. φ(yj), j ∈ S and φ(zj), j ∈ C are functions computing

the cost of operating a new parking with quality level yj and that of increasing an existing

parking in quality level zj, respectively. In this paper, we consider a linear service quality

8



cost function, i.e., φ(yj) = qcyj and φ(zj) = qczj, where qc is the cost of increasing one

level of service quality.

The problem consists of optimally deciding the location of new entrant parking facil-

ities S ⊆ P and determining their service quality by taking into account the reactions of

competitors’ parking facilities and limited budget, so as to maximize the total profit of

the entrant firm. Specifically, m competitors’ parking service facilities that are already in

the market can maximize their own profit by optimally improving their service quality.

2.2. Notations

The notations to be used for the formulation are summarized as follows.

Indices:

i: index of demand zone.

j: index of existing parking facilities and potential sites.

Parameters:

N : set of nodes in the network, i, j ∈ N .

A: set of arcs in the network.

P : set of potential locations for opening new parking facilities, P ⊂ N .

C: set of existing parking facilities, C ⊂ N .

D: set of demand zones, D ⊂ N .

wi: demand per unit time at zone i ∈ D.

dij: shortest distance from node i to j, (i, j) ∈ A.

αj: current quality level of existing facility j, j ∈ C.

β1: customer service quality sensitivity parameter, β1 ≥ 0.

β2: customer travel distance sensitivity parameter, β2 ≥ 0.

fj: fixed cost associated with the opening of a parking facility at site j ∈ P .

φ(yj): cost of operating a new parking j with quality level yj, j ∈ P .

φ(zj): cost of of increasing an existing parking j at quality level zj, j ∈ C.

B: budget of the entrant firm available for opening new parking facilities.

ρ: income from a single customer from sharing.

Bj: budget of existing parking j ∈ C available for improving its quality level.

qm: maximum quality level for each parking facility. Note that qm ≥ αj for j ∈ C.

qc: cost of increasing one level of service quality.

Decision variables:
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xj: equal to 1 if a parking is open at site j,∀j ∈ P , and 0 otherwise.

yj: quality level of new parking j,∀j ∈ P , and yj ∈ Qj = {qj1, q
j
2, ..., q

j
mj
}, where qjk, k =

1, 2, ...,mj is the k-th quality level of new parking j, 0 ∈ Qj. Note that yj = 0 means that

site j is not open.

zj: quality improvement level of parking j,∀j ∈ C, already in the market, and zj ∈ Qj =

{qj1, q
j
2, ..., q

j
mj
},where qjk, k = 1, 2, ...,mj is the k-th quality level of new parking facility

j, 0 ∈ Qj.

Intermediate variables:

uij: utility of a customer whose destination is demand zone i, i ∈ D who patronizes

parking facility j ∈ P ∪ C.

pij: probability of a customer i ∈ D to patronize parking facility j ∈ S ∪ C.

Mij: market share or customer flow at demand zone i, i ∈ D, captured by a parking

facility j, j ∈ S ∪ C.

πj: profit obtained by parking facility j, j ∈ S ∪ C.

2.3. Formulation

Based on the above discussion, the considered problem can be formulated as the

following integer non-linear program.

Model Pn :

max
∑
j∈P

πj =
∑
j∈P

(
ρ
∑
i∈D

Mij − φ(yj)− fjxj

)

=
∑
j∈P

(∑
i∈D

ρwiy
β1
j d
−β2
ij∑

l∈C(αl + zl)β1d
−β2
il +

∑
k∈P y

β1
k d
−β2
ik

− qcyj − fjxj

)
(8)

s.t.
∑
j∈P

(qcyj + fjxj) ≤ B, (9)

yj ≤ qmxj, ∀j ∈ P, (10)

qczj ≤ Bj,∀j ∈ C, (11)

zj + αj ≤ qm,∀j ∈ C, (12)

xj ∈ {0, 1},∀j ∈ P, (13)

yj, zj ∈ Qj,∀j ∈ P ∪ C. (14)

Objective (8) is to maximize the profit obtained by all new parking facilities for the

entrant firm. Constraint (9) ensures that the available budget of the entrant firm cannot
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be exceeded. Constraint (10) restricts that the value of service quality yj is equal to 0 if

site j is not selected and the service quality yj is bounded by qm if site j is open. Constraint

(11) ensures that the cost of each new parking j ∈ P for setting its service quality should

not exceed its available budget Bj. Constraint (12) means that the maximum quality

level of each existing parking j ∈ C should not exceed qm. Constraints (13) and (14)

enforce the restrictions on decision variables.

As mentioned above, each existing facility j, j ∈ C in the market would react to

maximize its profit obtained by improving its service quality. Then, for any j ∈ C,

the corresponding optimization problem can be also formulated as the following integer

non-linear program.

Model Pj :

maxπj =
∑
i∈D

ρwi(αj + zj)
β1d−β2ij∑

l∈C(αl + zl)β1d
−β2
il +

∑
k∈P y

β1
k d
−β2
ik

− qczj, (15)

subject to constraints (9)-(14).

Note that the entrant shared parking facilities and the existing ones would compete

with each other for market share such that their own profits are maximized. Such a

competitive process can be modeled as a non-cooperative game that will be detailed

later. Since a discrete facility location problem in a competitive environment without

considering quality decisions and competitors’ reactions is shown to be NP-hard [39],

the considered shared parking service facility location and quality design problem in a

competitive environment considering the competitors’ reactions is also NP-hard.

To solve the proposed model presents several challenges; in particular: (i) the in-

corporation of quality design and competitors’ reactions makes it harder to solve; and

(ii) the objectives of the model is non-convex and discontinuous (i.e., non-smooth and

non-linear). Existing methodologies cannot be directly used to solve the proposed model,

thus we develop novel solution methodologies next.

3. Solution Methodology

In this section, a solution framework is suggested to solve the considered problem. Its

core idea is to decompose the studied problem into two main phases: Quality determina-

tion and Location.
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Quality determination: Given a set of opened new parking facilities S, determining the

service quality at each parking as well as the improved service quality level at each

existing parking;

Location: Determining an optimal set of locations S.

In the framework, the former phase serves as sub-routine for the latter.

3.1. Quality determination

Given an optimal set of locations S ⊆ P , the optimization problem Pn reduces to the

following non-linear integer program:

Model P ′n :

max
∑
j∈S

∑
i∈D

ρwiy
β1
j d
−β2
ij∑

l∈C(αl + zl)β1d
−β2
il +

∑
k∈S y

β1
k d
−β2
ik

−
∑
j∈S

qcyj (16)

s.t.
∑
j∈S

qcyj ≤ B −
∑
j∈S

fj (17)

qczj ≤ Bj,∀j ∈ C (18)

yj ≤ qm,∀j ∈ S (19)

zj ≤ qm − αj,∀j ∈ C (20)

yj, zj ∈ Qj,∀j ∈ S ∪ C, (21)

and for any j ∈ C, its corresponding problem also reduces to the following non-linear

program:

Model P ′j :

max
∑
i∈D

ρwi(αj + zj)
β1d−β2ij∑

l∈C(αl + zl)β1d
−β2
il +

∑
k∈S y

βk
l d
−β2
il

− qczj, (22)

subject to constraints (17)-(21).

In the quality level determination phase, each parking j, j ∈ S ∪ C seeks for its best

service quality as the best response to the other parking facilities’ quality decisions. The

determination of the best service quality of both new and existing parking facilities lies

in finding an optimal quality combination (y, z) such that objectives (16) and (22) are

maximized while satisfying constraints (17)-(21). To derive the best quality, we model

the competitive quality decision process occurring among all parking facilities as a non-

cooperative multi-player game in which a parking and a possible set of quality (or a
12



possible set of quality improvements) are considered as a player j and a set of strategies

Qj, respectively, j ∈ S ∪C. Moreover, any feasible strategy of each parking must satisfy

its budget constraint. The game’s non-cooperative nature motivates us to choose Nash

equilibrium as its solution. In Nash equilibrium, the set of quality choices made by

the parking facilities are their best responses to the choices of the competitors’ parking

facilities.

As previously assumed, Qj, ∀j ∈ S∪C is a finite discrete set, thus the game’s solutions

are finite. Since in reality either the entrant firm or the competitors usually cannot know

the complete market information, a mixed-strategy is adopted to ensure the existence of

Nash equilibrium for the game. [40] proved that a finite game has a Nash equilibrium as

stated by the following theorem.

Theorem 1. If a game G is finite, then there is a mixed-strategy Nash Equilibrium for
G [40].

The considered non-cooperative n-player game can be represented by the following

tuple:

Γ = (S ∪ C, {Qj}j∈S∪C , {πj}j∈S∪C) (23)

According to Theorem 1 in [41], the problem of computing the Nash equilibrium of

game Γ can be formulated as an equivalent non-linear minimization program, shown as

follows:

Model PΓ :

min
∑
r∈S∪C

(π∗r − πr(σ)) (24)

s.t. πr(σ−r, s
k
r)− π∗r ≤ 0,∀r ∈ S ∪ C, ∀k = 1, 2, ..., lr (25)

lr∑
k=1

σkr = 1,∀r ∈ S ∪ C (26)

σkr ≥ 0,∀r ∈ S ∪ C (27)

where σ is the decision vector denoting the mixed strategy combination; σ−r and skr denote

the mixed strategy vector formed by all players except player r and k-th pure strategy

of player r, respectively; and σkr represents the probability assigned to pure strategy skr .

Note that the optimal value of PΓ is 0. The value of π∗r at the optimal point gives the

expected payoff of player r. For more details on the above formulation, we refer to [41].
13



In this study, we adopt the sequential quadratic programming based quasi-Newton

algorithm to solve PΓ such that the Nash equilibrium is identified. For more details on

this method, interested readers can refer to [41, 42].

3.2. Location

In this section, we develop tailored B&B and GA for locating parking facilities. In

general, although a B&B algorithm can find the optimal location, it is often computa-

tionally hard for large-sized NP-hard problems. Thus, we also develop a meta-heuristic

algorithm to solve large-sized instances more efficiently.

3.2.1. Branch and bound method

In this section, we focus on designing an exact method: branch and bound algorithm

to find an optimal solution. The B&B method is an iterative method that exploits a tree

structure (generally called tree search). The main part of the algorithm is composed of

two basic operations: branching and bounding. They can be simply explained as follows.

At n-th iteration (n ≥ 1), a node on at the current tree representing a partial solution

with its associated total fixed cost fon is selected according to a specified search strategy

(for the first iteration, the root node corresponding to the original solution space is con-

sidered), and then is branched into two child nodes o1
n and o2

n, which describes deciding

to add a new potential parking site j or not, respectively. For each node oin, i = 1, 2,

we update foin = fon + fj. If foin > B, which indicates that it does not contain a feasi-

ble solution, then node oin is pruned. If node oin is located at the |P |-th level detailed

later, which means that all potential parking sites are considered, then we compute a

lower bound LBoin
by determining the quality of both new and existing parking facilities,

and update the best lower bound found so far LBb if LBoin
> LBb. Otherwise, we define

problem UB(oin) representing a relaxation problem of the corresponding subproblem that

is then solved to obtain a corresponding upper bound (if it exists), denoted by UBoin
. If

UBoin
is less than or equal to LBb, which implies that it does not contain a global optimal

solution, then node oin is closed and the search for oin is terminated. If there exist unex-

plored nodes, a new iteration repeats; otherwise, the current lower bound is considered

as the optimal solution of the problem and the search is terminated. In what follows, the

main components of the proposed branch and bound algorithm including branching rule,

lower and upper bounds computation, search strategy and pruning schemes are detailed,
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followed by a summarization of the overall algorithm.

A. Branching rule: In a traditional B&B method, the branching procedure usually consid-

ers all decision variables of an optimization problem. However, for complex optimization

problems with multiple sets of variables like the considered problem containing three sets

of variables, i.e., xj, yj, and zj, a branching procedure taking into account all sets of vari-

ables usually requires excessive memory, which may result in slow convergence of a B&B

method. To accelerate the speed of the B&B method, we propose a branching procedure

based on partial variables, which is given in detail next.

For the studied problem, we can find that the location decision of new parking xj

would greatly affect the values of yj and zj as once locations of new parking facilities are

determined, the optimal quality of both new and existing parking facilities can be subse-

quently determined by computing the Nash equilibrium. Such an observation leads us to

design a branching procedure depending on variables xj instead of all sets of variables.

In our B&B method, the potential parking sites in set P are sequentially considered

through the branching procedure. Two branches are generated for each node. Each node

at level k represents a partial location scheme S ′, in which k potential parking sites are

already determined, and the remaining |P |−k potential sites are in the un-considered set

and sequentially considered next. At each node, two child nodes are created by consider-

ing a new potential site j selected from the un-considered set. In one child node, the new

potential site is considered to be opened, i.e., xj = 1, while in the other node the new

potential site is considered not to be opened, i.e., xj = 0. Note that the selected parking

site for each branching node is the one with the highest fixed cost among the remaining

unexplored ones, which aims to eliminate the leaf nodes violating the budget constraint

as soon as possible in the B&B tree, thereby accelerating the convergence speed.

B. Lower bound computation: To achieve rapid pruning for our B&B algorithm, thereby

accelerating its solution speed, we design a constructive heuristic to compute a lower

bound of solutions (i.e., a feasible solution). The basic idea of the heuristic is to open as

many new parking facilities as possible while respecting limited budget B to compete for

more market share. The proposed heuristic first finds a good feasible set of open locations

S0, then determines the quality of all parking facilities by computing the Nash equilib-
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rium for new opened and existing parking facilities, and finally calculating the objective

function value πS0 . Note that the heuristic can also be used as a standalone method. The

procedure of the heuristic for computing a lower bound is outlined in Algorithm 1.

Algorithm 1 Heuristic procedure for computing a lower bound

1: Initialize S0 ← ∅, and TC ← 0;
2: Sort all the potential sites in set P in the increasing order of their fixed cost, and let
j = 1;

3: while TC ≤ B do
4: Open the j-th sorted potential site, i.e., xj = 1, and set S0 = S0 ∪ j;
5: Let TC = TC + fj;
6: end while
7: Determine the quality of both new and existing parking facilities (y, z) based on S0

by computing the Nash equilibrium of game Γ;
8: Let TC = TC +

∑
j∈S0

qcyj;
9: if TC ≤ B then

10: Output the objective function value πS0 as the lower bound LB and stop.
11: else
12: TC = TC −

∑
j∈S0

qcyj;
13: Close the latest-opened parking j′ and let S0 = S0\{j′};
14: TC = TC − fj′ and go to Step 7;
15: end if

C. Upper bound computation: To accelerate the convergence of the B&B method, an

upper bounding scheme is proposed to prune part of branches in the search tree that

are not necessary to be explored further. Each node o in the B&B tree corresponds to

a partial solution where the values of some variables xj’s are determined. Let Ω(o) be

these js. To calculate an upper bound of the total profit of all new parking facilities

corresponding to node o, for each existing parking j ∈ C, we first fix the quality level to

its initial one αj, i.e., zj = 0; and for each new parking j ∈ P , we set its service level as

the maximum level qm if it is considered to be opened. Thus, the market share captured

by the new parking facilities would be maximal.

In addition, we also relax the budget constraints for existing and new entrant parking

facilities and only ensure that the total fixed cost of new entrant parking facilities is equal

to or less than the available budget. However, the obtained relaxed model is still non-

linear. To make the problem more tractable, we consider the attractions of the existing

parking facilities and the sites at which we decide to open a parking only, which is the
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denominator part of the objective function. Thus, we obtain a linear objective function.

Based on the above analysis, an upper bound of the total profit of all new parking facilities

corresponding to node o can be obtained by solving the following ILP:

Model UB(o):

UBo = max ρ
∑
i∈D

wi

∑
j∈P q

β1
m d
−β2
ij xj∑

j∈C α
β1
j d
−β2
ij

−
∑
j∈P

fjxj (28)

s.t.
∑
j∈P\Ω

fjxj ≤ B −
∑
j∈Ω

fjx
o
j (29)

xj = xoj ,∀j ∈ Ω (30)

xj ∈ {0, 1},∀j ∈ P\Ω (31)

where xoj are those values determined in node o. Note that the above ILP can be efficiently

solved by any optimization solver such as CPLEX.

If there is no solution to UB(o), then node o cannot lead to a feasible solution, and

thus can be eliminated from the search tree. Otherwise, the optimal objective function

value UBo provides an upper bound corresponding to node o.

D. Search strategy and pruning schemes: The selection of a good search strategy is

important for a B&B algorithm in terms of its efficiency as measured by computational

time and memory requirement. Different search strategies exist in the literature, such

as depth-first search, best-bound-search, and breadth-first search [43]. In our B&B algo-

rithm, we use the depth-first-search strategy plus backtracking rule to select a node for

the next branching in the search tree because it performs better than the others.

The search procedure in a branch is terminated when each of the following conditions

is satisfied:

i) The current selected node is a leaf or belongs to the |P |-th level; in other words, all

potential parking sites are added.

ii) The corresponding total fixed cost is greater than the budget B.

iii) The corresponding upper bound of the current node is less than or equal to the

best lower bound found so far.

E. Overall algorithm: The B&B algorithm to solve the addressed competitive shared

parking facility location and quality design problem is outlined in Algorithm 2.

17



Algorithm 2 Branch and bound algorithm

1: Construct an initial feasible location configuration S0 of the new parking facilities
and compute the corresponding objective function value πS0 with Algorithm 1, and
set the current best lower bound LBb as πS0 ;

2: Sort all the potential sites in set P in increasing order of their fixed cost;
3: Select an unexplored node in the B&B search tree according to the depth-first-search

strategy plus backtracking rule;
4: Split the selected node into two children branches: xj = 1 and xj = 0, where j

denotes the potential site with the largest fixed cost among the un-considered sites;
5: for k = 1; k ≤ 2; k + + do
6: if

∑j
i=1 fixi > B then

7: Node o is eliminated;
8: else if j = |P | then
9: Determine the quality of both new and existing parking facilities y, z, which

ensures the Nash equilibrium, and update the best lower bound πb as π(x,y,z) if
π(x,y,z) > LBb;

10: else
11: Compute an upper bound UBo for each branch by solving UB(o) defined in

(28)-(31) with CPLEX and obtain its corresponding location solution x;
12: if there is no solution or UBo ≤ LBb then
13: Node o is eliminated;
14: end if
15: end if
16: end for
17: if there is an unexplored node then
18: Go to Step 3;
19: else
20: Output the best solution (x, y, z) and the corresponding objective function value

LBb and stop.
21: end if

3.2.2. Genetic algorithm based method

As the problem is NP-hard, determining optimal solutions is computationally difficult,

especially for large-scale problems. Thus, in addition to the B&B based method developed

in the previous section, we propose a GA-based method to tackle large-scale problems.

GA is a nature-inspired meta-heuristic method introduced by [44] for solving complex

optimization problems. Due to its practical applicability and extensive generality, GA

has been successfully applied to many different optimization problems including workforce

staffing and assignment [45], credit scoring [46], and order clustering [47].

A GA is usually driven by an initial “population” of feasible solutions, each of which

is encoded as a chromosome. A new population of chromosomes is produced following

the operations of crossover, mutation, evaluation, and selection. The GA stops once a

stopping criterion is reached. Detailed procedure for solving the proposed problem with

a GA-based method is described next.
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A. Solution representation: In a traditional GA, a chromosome is encoded to repre-

sent a solution to the original problem. To effectively and efficiently solve the proposed

problem by GA, we propose to first use a chromosome to represent a partial solution and

then to obtain a complete solution by determining the remaining variables depending

on the derived partial solution. For this reason, we consider first encoding new parking

facilities’ location variables x by a chromosome.

Thus, we define a chromosome c = {cj|j = 1, 2, ..., |P |}, where |P | denotes the number

of potential locations for opening new parking facilities, to represent the set of decision

variables x = {xj|j = 1, 2, ..., |P |}. Each gene cj in chromosome c represents the value of

a decision variable xj. Then, based on the partial solution specified by a chromosome,

we obtain a complete solution by determining the quality of all parking facilities (i.e.,

(y, z)) identified by the Nash equilibrium of game Γ.

B. Initial population generation: The performance of a GA is affected by the choice

of its initial population of chromosomes. Thus, a population initialization procedure

tailored for the proposed problem is designed here.

To improve the quality of the initial set of individuals and reduce the search space

for an optimal solution, we first propose an upper bound on the number of new parking

facilities, denoted by |S|. Let qjmin denote the lowest quality among set Qj of parking,

j ∈ P . Then, |S| is derived via Algorithm 3 whose core idea is to open the potential

parking facilities of the lowest fixed cost with consideration of the lowest service quality

while respecting the budget limit. Obviously, |S| is less than or equal to |P | which helps

shrink the solution space.

Algorithm 3 Computing an upper bound on the number of new parking facilities

Input: fj, q
j
min, q

c, and B

1: Initialize total cost TC ←0 and |S| ←0
2: Sort all potential sites in set P in the non-decreasing order of their fixed cost fj
3: Set j=1 and TC = TC + fj + qjminq

c.
4: while TC ≤ B do
5: |S| = |S|+ 1, j = j + 1
6: TC = TC + fj + qjminq

c

7: end while
8: Output |S|.
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Then, we set the size of the population as PopSize. For a chromosome c, we first ran-

domly generate an integer |S| ∈ [1, |S|], then randomly select |S| potential sites from set

P and set their corresponding genes cj with the value of 1 and the remaining genes cj with

the value of 0, respectively. Thus, we obtain an initial chromosome c = (c1, c2, ..., c|P |).

We check whether this chromosome satisfies budget constraint (9) by considering a min-

imum quality level qjmin for each new opened parking. If so, this chromosome is feasible.

Otherwise, it is deleted and a new one is regenerated. In the same way, PopSize chromo-

somes are generated as the initial population {c1, c2, ..., cPopSize}. The detailed procedure

for the initial population generation is outlined in Algorithm 4.

Algorithm 4 Initial population generation

Input: PopSize, |S|, and B

1: Initialize l←1
2: while l ≤ PopSize do
3: Set clj ← 0 for ∀j ∈ {1, 2, ..., |P |}
4: Randomly generate an integer number |S| ∈ [1, |S|]
5: Randomly select |S| potential sites from set P and set their corresponding genes
clj with the value of 1

6: if
∑

j∈P (qcqjmin + fj)c
l
j > B then

7: Go to Step 3
8: else
9: cl is found and set l = l + 1

10: end if
11: end while
12: Output {c1, c2, ..., cPopSize}.

C. Fitness computation: For a chromosome c in the population, the objective function

of its decoded solution (x, y, z) is used to define the fitness function. First, we obtain

xj = cj for j = 1, 2, ..., |P |. Then, the quality of new and existing parking facilities (y, z)

are determined by calculating the Nash equilibrium of game Γ.

As the decoded solution may violate the budget constraint (9), we thus transform the

budget constraint into a soft constraint based on a budget feasibility test (BFT) function.

BFT is defined as max{0,
∑

j∈P (qcyj + fjxj) − B}. If BFT of a solution is greater than

0, a penalty value will be added to the fitness function. Thus, the fitness value of a
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chromosome c is calculated as follows:

Fit(c) = Profit(x, y, z)− η × BFT (32)

where Profit() calculates the total profit of all new entrant parking facilities via (8); and

η denotes a penalty factor. The larger the fitness function value, the better the corre-

sponding individual.

D. Section operation: The selection of chromosomes is done using roulette wheel section.

It is a fitness-proportional-based selection in which chromosomes with higher fitness have

larger probability to be selected. For each chromosome cl, its probability of being se-

lected is defined as pl = Fit(cl)∑
l Fit(c

l)
. The selection process is done by spinning the roulette

wheel PopSize times. Each time one chromosome is chosen for a new population with

probability pl.

E. Crossover operation: First, we define a probability pc for crossover operation. Then,

we randomly generate a real number r ∈ [0, 1]. If pc > r, two parent chromosomes

cl = (cl1, c
l
2, ..., c

l
|P |) and ck = (ck1, c

k
2, ..., c

k
|P |) and an integer λ ∈ [2, |P | − 1] are randomly

generated. Thus, two offsprings (cl1, ..., c
l
λ, c

k
λ+1, ..., c

k
|P |) and (ck1, ..., c

k
k, c

l
λ+1, ..., c

l
|P |) are

produced.

F. Mutation operation: First, we define a probability pm for mutation operation. Then, for

each gene of the selected parent chromosome, randomly generate a real number s ∈ [0, 1]

and update the gene’s value from 0 to 1 or 1 to 0 if pm > s. Thus, a mutated child

chromosome is generated.

G. Termination criterion: The GA-based algorithm is terminated when a maximum

number of generations MaxGen is reached.

H. Overall algorithm: Algorithm 5 presents the GA-based method.
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Algorithm 5 GA-based method

1: Initialize the population size PopSize, crossover probability pc, mutation probability
pm, and maximum number of generations MaxGen. Set generation index i←1;

2: Initialize PopSize chromosomes as the initial population calling Algorithm 4;
3: Calculate the fitness value of each new chromosome c;
4: Set xj = cj for j = 1, 2, ..., |P |;
5: Derive the quality of both new and existing parking facilities (y, z) by computing the

Nash equilibrium of game Γ;
6: Calculate the fitness value Fit(c) via (32);
7: Select chromosomes by spinning the roulette wheel if i > 1;
8: Produce new chromosomes via crossover and mutation operations;
9: if i = MaxGen then

10: Output the best found solution (x, y, z), then stop.
11: else
12: Set i = i+ 1 and go to Step 3;
13: end if

4. Numerical Experiments & Managerial Insights

In this section, we first use a small example for illustration and to draw managerial

insights. We then test a large-sized problem with 320 randomly generated instances to

verify the performance of the proposed algorithms.

4.1. Simple example & managerial insights

A simple simulated example with a five by five customer demand zone (Figure 2) is

conducted. We consider 25 demand zones and 6 potential shared parking sites P1-P6.

The red zone indicates a high-demand area where an existing competitor C is located.

The parameters are set as follows: the current quality level of the competitor is set at

5, the maximum quality level for any parking facility is 15, the cost for increasing one
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Figure 2: Basic setup
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Figure 3: Location decision without compe-
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level of service quality is 50, the income from a single customer from sharing is 50. The

fixed costs of selecting P1, P2, P3, P4, P5, and P6 are 300, 500, 300, 700, 600, and

500, respectively. The customer demand is set to be 10 from zone 1-25, except the red

zones 12, 13, 17, and 18, where demand is set to be 100. The distances matrix between

potential and existing parking and demand zones are listed in Table 1.

Table 1: The distances between potential and existing parking and demand zones

P

dji D
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P1 0.1 5 10 15 20 5 7 11 16 21 10 11 14 18 22 15 16 18 21 25 20 21 23 25 28
P2 10 5 0.1 5 10 11 7 5 7 11 14 11 10 11 14 18 16 15 16 18 23 21 20 21 23
P3 20 15 10 5 0.1 21 16 11 7 5 22 18 14 11 10 25 21 18 16 15 28 25 23 21 20
P4 10 7 8 11 15 7 3 4 8 13 8 4 4 8 13 11 8 9 11 15 15 13 13 15 18
P5 21 18 16 15 16 18 14 11 10 11 16 11 7 5 7 15 10 5 0.1 5 16 11 7 5 7
P6 18 18 20 22 25 13 13 15 18 22 8 9 11 15 20 4 4 9 13 18 3 4 8 13 18
C 20 18 18 19 22 15 13 13 15 18 11 9 8 11 14 9 4 4 8 12 8 4 2 8 12

We consider three scenarios (1 monopoly, 2 duopoly, 3 duopoly with service differ-

entiation) and investigate the optimal location and quality decisions. For the monopoly

case, there is no competition so minimizing the weighted travel distance to achieve a high

service coverage of demand is simply optimal for the firm. For a fair comparison among

three scenarios, the initial quality level of new shared parking facilities for the first two

scenarios are set at 5, which is the same as that of the competitor.

Table 2: Computational results for the case study

Scenarios
New entrant firm The competitor

Profit Cost Location Quality Profit Cost Quality improvement

Scenario 1 29650 850 P4 - - - -

Scenario 2 18335.98 1800 P4, P5 - 10364.02 0 -

Scenario 3 14809.73 2000 P3, P4 5, 15 13190.27 500 10

The computational results are summarized in Table 2 and illustrated in Figures 2-

6. Figure 2 shows the basic model setup with zones of regular parking demand, high

demand zones, potential parking facilities and a competitor. Figure 3 shows that without

competition. The best solution for the firm is to select facility P4, which is located

closest to the high demand zone. When there is a competitor, as shown in Figure 4,

the optimal locations include both P4 and P5. One explanation is that the competitor
23
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changes the demand distribution for the firm, especially in the red zones. To react, the

firm includes a new parking facility that is less affected by the competitor. We include

differentiated (higher) service offering in Figure 5. The firm’s location selection becomes

P4 and P3. Higher service offering (such as fast EV charging) gives the customer more

incentive to use such parking facilities even if they are farther away. Higher service

level expands the maximum travel distance limit between the demand and the facility

location. Traditionally if we consider only location, P3 would not be included because it

is the most remote site with low coverage rate. With high service level offerings and with

competition, P3 now appears in the list of optimal parking locations when the competitor

also increases its service level.

From Table 2, we see that the total profits of the new entrant shared-parking fir-

m without competition, with competition, and with quality differentiation are 29650,

18335.98, and 14809.73 respectively. The investment cost increases from 850, 1800, to

2000. For the case without competition, only one facility is established, while two facili-

ties are opened for the cases with competition. Moreover, the area with maximum travel

distance is enlarged when the service quality is increased. For the first two cases without

quality competition, the center parking points with high demands are considered. With

quality differentiation, the firm’s profit decreases because of the additional cost to im-

prove quality and because of competitor’s reaction by improving its service quality. In

this case, the firm’s decision includes a very remote parking point P3, which is counter-

intuitive if we don’t consider parking service competition. Such results are clearly shown

in Figures 2-5. The competitor’s total profit increases from 10364.02 to 13190.27 when
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service quality improvement is considered.

4.2. Larger-sized randomly generated instances

For the large sized problems, different cities/areas have their unique setups in terms

of shared parking availability, parking demand pattern, and competition. Each scenario

(e.g., map of parking facilities in a city) renders a unique problem setup for the decision

maker. The solution algorithms perform differently when the problem size differs. Re-

garding solvability and solution optimality, we therefore conduct a series of analysis to

investigate the suitable solution methods from small to large sized problems.

We evaluate the performance of the proposed algorithms with 32 groups of randomly

generated instances under different structures with 10 instances for each group, thus

leading to 320 instances in total. Each item for each group in the computational result

table is the average value of the 10 instances. The proposed algorithms are coded in C++,

with which the sequential quadratic programming based quasi Newton method [41] and

IBM ILOG CPLEX 12.2 are combined to compute the Nash equilibrium of game Γ and

exactly solve UB(o), respectively. CPLEX is run in default options. We set PopSize and

MaxGen to 50 and 200 by rules of thumb. To select a better crossover and mutation

probability combination (pc, pm), various combinations of crossover probabilities {0.7,

0.8, 0.9} and mutation probabilities {0.05, 0.10, 0.15} are compared in the preliminary

experiments. The combination (0.9, 0.15) generally performs better than the others and

is then adopted for the GA-based method in the remaining experiments. In addition, for

each instance, we test the GA-based method through 10 independent runs and compute

the average value for analysis. The computational time for both methods of each instance

is limited to 36,000 s. All tests are carried out on a PC equipped with a 2.4 GHz processor

and 2 GB of memory.

The data for each test instance is randomly generated in the following way. The

customer demand per unit time at each zone wi, i ∈ D, is randomly generated in the

interval [10, 50]. The locations of demand zones, existing and candidate parking facilities

are randomly distributed in a [0, 50]×[0, 50] Euclidean plane. The shortest distance

between each zone and each parking dij, i ∈ D, j ∈ P ∪ C, is calculated accordingly.

The service quality of each existing parking j is randomly generated in the interval [1,

10], j ∈ C. Each new parking j is assumed to have three levels of service quality, i.e.,

Qj = {5, 10, 15}, j ∈ P ; and each existing parking j is assumed to have two levels of
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service quality improvement, Qj = {5, 10}, j ∈ C. The cost for increasing one level of

service quality qc and the fixed cost of opening a potential parking fj, j ∈ P are randomly

generated in the interval [50, 100] and [200, 500], respectively. Both sensitivity parameters

β1 and β2 are set to 1. The available budget of the entrant firm B is set to 2000. The

available budget of the existing parking is set as: Bj = 1000, j ∈ C. The income from a

single customer from sharing ρ is set to 50.

In the experiments, the results obtained by the B&B algorithm are compared with

those obtained by the GA-based method in terms of two performance measures : (i)

deviation (%)=LBGA−Opt.
Opt.

∗ 100% where Opt. and LBGA denote the objective function

value obtained by the B&B algorithm and GA-based method, respectively; and (ii) com-

putational time ratio=CTB&B

CTGA
where CTB&B and CTGA denote the computational time

(CPU seconds) spent by the B&B algorithm and GA-based method, respectively. The

comparison results of both methods are summarized in Tables 3-6.

Table 3: Computational results for instances with |P | = 3

Group |C| |D| B&B algorithm GA based method
Ratio

CPU time (s) Deviation (%) CPU time (s)
1 3 20 8.50 0.00 35.20 0.24
2 50 8.84 0.00 35.30 0.25
3 100 8.88 0.00 38.30 0.23
4 5 20 13.19 0.00 54.60 0.24
5 50 16.92 0.00 62.50 0.27
6 100 18.01 0.00 87.50 0.21
7 7 20 64.12 0.00 173.20 0.37
8 50 86.29 0.00 339.50 0.25
9 100 120.82 0.00 404.00 0.30

Average 38.40 0.00 136.68 0.28

Table 3 reports the computational results for instances with |P | fixed at 3, |C| = 3, 5, 7

and |D| = 20, 50, 100. From Table 1, we observe that: i) The proposed B&B algorithm

can find optimal solution for all the instances within about 2 minutes, which indicates its

effectiveness and efficiency in obtaining optimal solutions. The deviations of the solutions

found by the GA-based method are 0, implying that an optimal solution is obtained for

each instance. This shows that the proposed GA-based method is able to find high-quality

solutions; ii) The CPU time for the B&B algorithm (resp. the GA-based method) varies

from 8.5 (resp. 35.20) to 120.82 s (resp. 404 s) with its average value 38.4 s (resp. 136.68

s). The B&B algorithm spends less time than the GA-based algorithm over all groups,

and the former spends 28% time of the latter on average. This shows that the B&B
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algorithm is more efficient than the GA-based method; and iii) The CPU times for both

the proposed methods show an increasing trend as the problem size increases. Moreover,

for each given |C| (resp. |D|), the CPU time for the B&B algorithm increases with |D|

(resp. |C|), which implies that the problem’s complexity increases with |C| and |D|.

Table 4: Computational results for instances with |P | = 5

Group |C| |D| B&B algorithm GA based method
Ratio

CPU time (s) Deviation (%) CPU time (s)
10 3 20 33.47 0.00 150.00 0.22
11 50 36.75 0.00 159.60 0.23
12 100 48.19 0.00 201.60 0.24
13 5 20 92.40 0.00 349.20 0.26
14 50 100.97 0.00 391.20 0.26
15 100 131.30 0.01 465.80 0.28
16 7 20 220.23 0.00 783.10 0.28
17 50 249.01 0.00 1489.37 0.17
18 100 909.29 0.00 3888.42 0.23

Average 202.40 0.00 875.37 0.23

Table 4 presents the computational results for 9 groups of instances with |P | increased

to 5, |C| = 3, 5, 7 and |D| = 20, 50, 100, from which we can also conclude that: i) the

proposed B&B algorithm can find optimal solutions for all the tested instances within

a short time (i.e., 910 s), which confirms its efficiency in optimally solving the studied

problem; ii) the average deviation varies from 0.00 to 0.01% with its average value being

about 0.00, and its value is 0.00 for 8 out of 9 groups, which again shows that the

proposed GA-based method is able to find high-quality near-optimal solutions; and iii)

the CPU time spent by the B&B algorithm increases from 33.47 to 909.29 s with its

average value being 202.40 s, while that of GA-based method varies from 150 to 3888.42

s with its average value being 875.37 s. Moreover, the former is less than the latter over

all groups and increases more moderately than the latter with the problem size. These

results indicate that the proposed B&B algorithm is superior to the GA-based method

in solving the instances with a larger |P |=5.

Table 5 summarizes the computational results for the instances with |P | increasing

to 10, from which we can further find that: i) the computational time for the B&B

algorithm increase as |P | increases from 3 to 10 for each given |C| and |D|. Take groups

9, 18 and 27 as an example, all groups are with |C|=7 and |D| =100, but |P | are 3, 5 and

10, respectively, the CPU times are 102.82 s, 909.29 s, and 6900.77 s, respectively. This

indicates that the complexity of the problem also increases with |P |; ii) the GA-based
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Table 5: Computational results for instances with |P | = 10

Group |C| |D| B&B algorithm GA based method
Ratio

CPU time (s) Deviation (%) CPU time (s)
19 3 20 299.17 0.01 390.00 0.77
20 50 321.84 0.00 366.00 0.88
21 100 400.71 0.00 488.00 0.82
22 5 20 645.84 0.01 737.10 0.88
23 50 697.79 0.18 862.00 0.81
24 100 840.97 0.04 814.50 1.03
25 7 20 3268.02 0.00 3356.50 0.97
26 50 4660.38 0.00 5127.20 0.91
27 100 6900.77 0.00 7437.60 0.93

Average 2003.94 0.03 2175.43 0.92

method can obtain close to optimal solution as the deviation varies between 0 and 0.18%

with its average value being 0.03%; and iii) the CPU times for both the proposed methods

have similar increasing trends as the size of the problem increases.

By comparing all the results in Tables 3-5, we summarize the conclusions below.

i) The computational time spent by the proposed B&B algorithm increases more rapid-

ly with the number of potential parking facilities (i.e., |P |) compared with that with

the number of existing parking facilities |C| and demand zones |D|. This may be

because the branching procedure of the B&B algorithm is determined by the number

of potential location sites and most computational time of the algorithm is spent on

solving the integer linear program for computing an upper bound at each explored

node; and,

ii) The computational time spent by the GA-based method is more than that of the

B&B algorithm over all groups which may be because the CPU time for the GA-

based method depends considerably on the number of existing parking facilities

and demand zones, while the B&B algorithm depends relatively slightly on them.

However, note that the value of the “Ratio” has an increasing trend as |P | increases.

For example, on average, the ratio is 0.28 for |P |=3 while it is 0.92 for |P |=10.

These results imply that the GA-based method performs more stably than the

B&B algorithm as the problem size increases.

In order to further explore the influence of the number of potential parking sites |P | on the

performance of both the proposed algorithms, we also conduct a series of computational

experiments that vary the potential number of sites for the location of new parking

facilities from 5, 10, 20, 50 to 100, with the number of demand zones fixed at 50 and the

number of existing parking facilities fixed at 3. The computational results are summarized
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in Table 6.

Table 6: Computational results for large-sized instances with |P |=5, 10, 20, 50 and 100

Group |P | B&B algorithm GA based method
Ratio

CPU time (s) Deviation (%) CPU time (s)
28 5 35.46 0.00 140.40 0.25
29 10 280.60 0.00 377.20 0.74
30 20 4347.98 0.01 964.00 4.51
31 50 18260.30 0.10 2256.00 8.09
32 100 35223.54 0.05 9822.62 3.59

Average 11699.58 0.03 2712.04 4.29

From Table 6, we can conclude that: i) the proposed B&B algorithm is able to obtain

optimal solutions for instances with up to 100 potential parking facilities within the given

time. The deviation varies between 0.00 and 0.1% with its average value being 0.03%,

which again indicates the high quality of the solutions obtained by the GA-based method;

and ii) the CPU time for the B&B algorithm increases from 35.46 to 35223.54 s with its

average value being 11629.58 s, while that for the proposed GA-based method varies

between 140.40 and 9822.62 s. On average, the former is 4.29 times the latter. Moreover,

the CPU time for the B&B algorithm increases sharply with the number of potential

parking facilities, while that of the GA-based method increases moderately and remains

acceptable even for instances with a large number of potential parking sites |P |=100.

This shows that the GA-based method is superior to the B&B algorithm in terms of

computational efficiency for solving large-scale instances with a large number of potential

parking sites.

To sum up, the B&B algorithm is quite efficient and suitable for solving small- and

medium-sized problems, while the GA-based method is more efficient for solving large-

sized problems. The GA-based method is therefore the preferred method (vs. B&B

method) to solve practical sized problems.

5. Conclusions

This paper investigates an emerging research problem of optimal facility location and

associated quality design for a new-entrant shared parking firm when facing competi-

tion from existing service providers. The service quality is differentiated by emerging

technologies such as IoT, sensor system, charging system, and RFID parking facility

surveillance system. These technologies offer vehicle tracking and tracing capability as
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well as information on connected parking facilities. On-site electric charging devices can

be designed to offer various levels of charging speed/time that is considered as one of the

key quality indicators for electric vehicles. Parking facility surveillance based on video

and sensor improves parking security service quality. Automated checkpoints with R-

FID and facilitated mobile payments improve convenience and help reduce customer wait

time.

We then introduce a new discrete competitive facility location and design that incor-

porates the responses of the facilities that are already in the market and limited budget

constraints and formulates its decision model. To solve this problem, an iterative so-

lution framework consisting of quality determination and location is developed. In the

quality determination phase, the competitive decision process occurring among facilities

is modeled as a non-corporative game and the best qualities of the new facilities and

existing ones are identified through Nash equilibrium. A B&B algorithm and a GA are

developed to determine the locations of new shared parking facilities. Computational

results on 320 randomly generated instances show that the proposed B&B algorithm is

able to find optimal solutions in reasonable time for small-sized problems with relatively

fewer number of potential parking sites, while the proposed GA-based approach is more

efficient and suitable for solving large-sized problems with a large number of potential

parking sites.

In this paper, we consider a model of available shared parking spaces at the macro

level without considering the flow of patrons at the microscopic level where each patron

needs to make decisions based on availability (such as choosing the second-best choice).

Integrating the consumers’ route decision at the micro level is another future research

question to extend this work. The pricing of parking services can be designed in the

model to further explain the dynamics of competition in the shared parking market. Few

articles on parking facility decision models have considered pricing. Our literature review

also shows a void in research on parking pricing that is related to parking distance,

capacity, and quality. An immediate future research can be directed at investigating

shared-parking pricing as an extension of this work. In this paper, we also assume that

the new shared parking firm must possess facilities from the market while the competitors

may also enter the market. Consequently, a future extension of this research is to take

into account the actions of competitor’s new facility decision. From another point of
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view, shared parking could lead to a reduction in pollution. Thus, future research of

green issues in shared parking is practically important [48]. The development of effective

methods for the proposed and extended problems [46, 49–55] is another future research

topic.
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[28] H. Küçükaydın, N. Aras, İ. K. Altınel, A discrete competitive facility location model with

variable attractiveness, Journal of the Operational Research Society 62 (9) (2011) 1726–

1741.

[29] D. Konur, J. Geunes, Competitive multi-facility location games with non-identical firms

and convex traffic congestion costs, Transportation Research Part E: Logistics and Trans-

portation Review 48 (1) (2012) 373–385.
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