Quantum emitters based on polymeric structures embedded with quantum dots fabricated via photo-polymerization - Université de technologie de Troyes Accéder directement au contenu
Communication Dans Un Congrès Année : 2020

Quantum emitters based on polymeric structures embedded with quantum dots fabricated via photo-polymerization

Résumé

Quantum emitters are essential for quantum optics and photonic quantum information technologies. To date, diverse quantum emitters such as single molecules, quantum dots, and color centers in diamond have been integrated onto chips by various methods which typically have complex operation. Here, our quantum emitters are colloidal CdSe/ZnS quantum dots (QDs) embedded in polymeric nanostructures. We report two approaches based on photo-polymerization for deterministically integrating quantum emitters on chips. Firstly, based on one-photon polymerization (OPP), we coupled an external excitation laser into surface ion exchanged waveguides (IEWs), the surface evanescent wave resulting in the QD-polymer ridges. In order to scale down the dimension of the QD-polymer structures, we secondly fabricated QD-polymer nano-dots on glass substrates by a direct laser writing platform (DLW) based on two-photon polymerization (TPP). A deep fabricating parameters study has been made enable us to control the dimensions of the polymer-QDs nanocomposites. Moreover, photoluminescence (PL) measurement results demonstrate the feasible and potential of our method for integrating quantum emitters onto future complex photonic chips.
Fichier non déposé

Dates et versions

hal-02498727 , version 1 (04-03-2020)

Identifiants

Citer

Xiaolun Xu, Josslyn Beltran Madrigal, Aurélie Broussier, Giuseppe Lio, Fabien Geoffray, et al.. Quantum emitters based on polymeric structures embedded with quantum dots fabricated via photo-polymerization. Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIII, Feb 2020, San Francisco, United States. pp.23, ⟨10.1117/12.2544446⟩. ⟨hal-02498727⟩

Collections

CNRS UTT UTT-L2N
41 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More