Face presentation attack detection based on a statistical model of image noise - Université de technologie de Troyes Access content directly
Journal Articles IEEE Access Year : 2019

Face presentation attack detection based on a statistical model of image noise

Abstract

The vulnerability of most existing face recognition and authentication systems against face presentation attacks (a.k.a. face spoofing attacks) has been mentioned and studied in many works. This paper introduces a novel parametric approach for face PAD using a statistical model of image noise. In fact, facial images from a presentation attack contain specific textural information caused by the presentation process which makes them different from bona-fide images. The subtle difference between bona-fide and presentation attack images can be interpreted by the difference regarding noise statistics within the skin zone of the face. Our solution is casted in the hypothesis testing framework. A new database for face PAD containing face bona-fide images and images of high-quality presentation attacks has been also introduced. The performance of the proposed approach was proven in the mentioned database. Experimental results show that, in a controlled situation, our solution performs better than the other approaches in the literature.

Dates and versions

hal-02394822 , version 1 (05-12-2019)

Identifiers

Cite

Hoai Phuong Nguyen, Agnès Delahaies, Florent Retraint, Frederic Morain-Nicolier. Face presentation attack detection based on a statistical model of image noise. IEEE Access, 2019, 7, pp.175429-175442. ⟨10.1109/ACCESS.2019.2957273⟩. ⟨hal-02394822⟩
50 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More