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Abstract

This paper addresses a capacitated lot-sizing problem with pricing deci-

sions. The considered problem consists of planning the production of di�erent

products during several time periods with setup costs. Unlike the classical

version of the capacitated lot sizing problem, the demand for the products

is not �xed but price-sensitive in this problem. The demand function is as-

sumed to be nonlinear. The decisions consist of establishing the best strategy

for production and inventory, and the best price policy. We propose an im-

proved mathematical formulation by extending some previous works using

new lower and upper bounds to reduce the solution space. We also introduce

new heuristic methods to provide near-optimal solutions. These methods

are tested on several instances from previous studies. The obtained results

illustrate the e�ciency of these methods.
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1. Introduction

Dynamic pricing can be considered one of the most powerful features for companies

to increase their pro�t and the adaptability of factories (Kienzler (2018)). The use

of a pricing strategy associated with demand knowledge helps companies manage their

production and optimize their inventory policy.

Dynamic pricing has been a subject of research for economists for more than 50

years. It became popular with companies after the success of yield management in the

airline industry, increasing company pro�ts in the sector (for instance, it increased the

pro�ts of American Airlines by 5% (Smith et al. (1992))). Yield management has been

successfully applied to the hotel industry (Bitran and Mondschein (1995), Bandalouski

et al. (2018)) and passenger trains (Bharill and Rangaraj (2008)). It is also currently

used by e-retailers (for example Amazon (Chen et al. (2016))), but has yet to be applied

to complex production and inventory systems.

Di�erent surveys on dynamic pricing and inventory decisions were conducted: Bitran

and Caldentey (2003), Elmaghraby and Keskinocak (2003), and Chen and Chen (2015).

In addition, Chan et al. (2004) and Chen and Simchi-Levi (2012) considered problems

dealing with inventory and dynamic pricing decisions with production considerations.

Di�erences between monopolistic and competitive markets must also be considered.

A competitive market is generally modelized using game theory. In Adida and Perakis

(2010) and Lamas and Chevalier (2018), problems with a company and multiple com-

petitors are modelized. The main purpose of the studies was to �nd the Nash equilibrium

maximizing the total pro�tability of their systems.

In studies on dynamic pricing with monopolistic companies, two main types of mod-

elization have arisen. The �rst considers a Markov or Poisson decision process. The

demand for a product is then represented by an arrival rate of the customers, depending

on the price. For instance, Chen et al. (2015) studied a make-to-order system with pric-

ing and modelized the demand using a Poisson process. In Yu et al. (2017), a production

and inventory system, in which certain products could be substituted by higher-quality
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products to ful�ll a demand, was studied. In the cited papers, the authors determined

an optimal price and production policy based on the state of the system.

The second main type of modelization for monopolistic problems is mathematical

programming. The majority of these mathematical formulations are in fact based on

lot-sizing formulations. The main di�erence with lot-sizing problems concerns a non-

�xed product demand. The demand is modelized by a closed-form function depending

on the price. The study in Thomas (1970) was one of the �rst to deal with pricing

and lot-size decisions, and the author derived an optimal price policy based on discrete

values of the production and demand. Haugen et al. (2007) expanded the capacitated

lot-sizing problem by introducing pricing considerations. This model may also be viewed

as an expansion of Thomas' study. In Mahmoudzadeh et al. (2013), a problem of the

production of new products and a remanufacturing of old products was considered. They

also proposed a deterministic and robust mathematical formulation. In Bajwa et al.

(2016a), a model similar to that by Haugen et al. (2007) was proposed, although it

allowed lost sales and applied an exact algorithm. The authors also compared the results

obtained by the non-coordinated and the coordinated approach. Ouazene et al. (2017)

studied a problem with multiple selling channels for products. The authors compared

the impact of dynamic and static pricing on the pro�ts.

In Huang et al. (2013), a survey of di�erent methods for modelizing customer demand

was presented. The two most widely used type of demand functions are linear and isoe-

lastic functions. All the studies on lot-sizing cited here considered a linear demand. The

survey also provided interesting variants for incorporating advertising, rebates, quality,

and lead-time into the demand function.

Few problems are modelized through di�erential equations. In Maihami and Karimi

(2014), a generic, stochastic, and price-dependent demand was proposed. The authors

proved the uniqueness of their solution and developed an algorithm to determine it. Feng

et al. (2018) proposed a model with an inventory level based on a di�erential equation,

where the production is controlled based on the production rate. The resolution approach
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used Lagrange multipliers, and was aimed at �nding the optimal price and production

rate for each model state. In Wu et al. (2017), a lot-sizing and pricing problem was

presented, which used the Bass di�usion model for the demand of new products. The

problem is modelized using a di�erence equation (discretized di�erential equation), and

every state of the system is fully determined by its initial state.

Studies dealing with lead-time decisions and dynamic pricing have also been previ-

ously published. In Li et al. (2012), a model with lot-sizing decisions was developed,

where the customer may accept a delayed delivery to earn a discount. In Öner-Közen

and Minner (2017), a Markov decision process was designed based on price and lead-time

dependent consumers, and considering a guaranteed lead-time decision. The authors de-

rived optimal strategies for variable decisions. Finally, in Albana (2018) a model for a

supply chain with pricing and lead-time decisions was proposed. The author considered

a decrease in production cost based on the lead-time.

Regarding the variety of models studied in the literature, a comparison of the di�er-

ent methods is not easy, and few benchmarks or data exist to test these methods. In

addition, there has been a lack of real-world application studies in the literature, despite

all advantages a company may earn by using dynamic pricing. For a company, achiev-

ing an accurate representation of product demand is complex, requiring numerous price

changes to estimate the demand parameters. In den Boer (2015), a survey on demand

learning was provided, as well as a method for using it in a dynamic pricing problem.

The results illustrate the trade-o� companies face between learning to have a reliable de-

mand representation and using the results to create a pro�t. In Fisher et al. (2017), an

example of successful demand learning is described. The methods applied to obtain real

data are presented in their study. The authors worked with an e-retailer, experimented

with random price changes over a one month timeframe and recorded daily changes in

their competitors. They succeeded in obtaining an accurate demand function, and the

use of this function in a dedicated algorithm increases the e-retailer revenue by 11% for

the tested products. Herbon (2014) also considered an inventory problem with dynamic
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pricing decisions, and the author aimed to �nd the optimal choice for a retailer between

the development of a dynamic pricing model and the collection of customer purchase

information.

In this study, we focus on a lot-sizing problem with pricing decisions. The problem

considers multiple products and setup cost. The demand function is assumed to be

isoelastic.

The main contributions of this paper can be summarized as follows.

• A new mathematical model is proposed.

• A heuristic method is developed, which provides high-quality solutions.

The remainder of this paper is organized as follows. Section 2 is dedicated to the

mathematical formulation and its theoretical properties. In section 3, the resolution

method based on two constructive heuristics is detailed. Section 4 compares the results

of the heuristics on instances from the literature with results obtained using the LINGO

solver. Finally, some concluding remarks and insights into future study are provided.

2. Problem formulation

The initial problem considered in this study is the same as the most general model

addressed in Bajwa et al. (2016a). Their mathematical model is denoted in our study as

(P0). The problem represents a company producing and selling products. The company

is also able to stock its products to sell them later. The seller decides during each

period the quantity of products produced, the quantity stocked, and the quantity sold

to maximize its pro�ts.

The customer demand for each product is represented by a price-dependent function.

In our study, the considered demand function is an isoelastic one: D(Pjt) = γjtαjP
−βj
jt ,

where γ is the seasonality parameter, α is the demand for a price equal to 1, and β is the

price elasticity of the demand. The price of each product can be changed during each

period (we assume here that the cost of changing the price is negligible).
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2.1. Notations

The decision variables used in the mathematical model are as follows:

• Pjt: Price for product j during period t;

• Sjt: Quantity of product j sold during period t;

• Xjt: Quantity of product j produced during period t;

• Ijt: Inventory of product j at the end of period t;

• Yjt: Binary, equal to 1 if there is a setup to produce j during period t; 0, otherwise.

The �rst four variables are non-integer and greater than or equal to zero. The last

one is a binary variable {0,1}.

The following sets and notations are used for the mathematical model:

• J : Number of products;

• T : Number of time periods;

• cjt: Production cost for product j during period t;

• hjt: Inventory cost for product j during period t;

• ajt: Setup cost to produce j during period t;

• Ct: Production capacity during period t;

• vj : Production capacity used for one unit of product j;

• αj : Demand of product j for a price equal to 1;

• βj : Price elasticity of the demand for product j;

• γjt: Demand seasonality of product j during period t .
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2.2. Initial model

The initial model (P0), is detailed below:

max z =

J∑
j=1

T∑
t=1

(PjtSjt − cjtXjt − hjtIjt − ajtYjt) (1)

such that

Sjt − γjtαjP
−βj
jt ≤ 0,∀j, t (2)

J∑
j=1

vjXjt ≤ Ct,∀t (3)

Sjt + Ijt − Ijt−1 −Xjt = 0,∀j,∀t ∈ {2, ..., T − 1} (4)

Sj1 + Ij1 −Xj1 = 0,∀j (5)

SjT − IjT−1 −XjT = 0,∀j (6)

vjXjt − CtYjt ≤ 0,∀j, t (7)

Xjt, Sjt, Pjt, Ijt ≥ 0, Yjt ∈ {0, 1} , ∀j, t (8)

Equation (1) represents the objective function de�ned as a pro�t maximization.

Constraints (2) ensure the sales for the products to be less than or equal to the demand

for these products, where an inequality means that lost sales are allowed. Constraints

(3) are production capacity constraints. Constraints (4), (5), and (6) represent the

stock conservation constraints, with the initial and �nal inventory equal to zero. Finally,

constraints (7) add a setup cost for each production period.
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2.3. Discussion on the nonconvexity of the problem

This model (P0) is a classical model already proposed in the literature. Owing to

the constraints (2) and objective function, the model is nonlinear. In addition, the

same constraints make the model nonconvex. The outer approximation algorithm was

introduced by Duran and Grossmann (1986) and consists of decomposing a model into

a master problem with relaxed nonlinear constraints and several primal models. The

results of the primal model are injected into the master problem to linearize the removed

constraints. This algorithm was used by Bajwa et al. (2016a) to solve the problem with

a linear demand, but is not usable for a model with an isoelastic demand function. This

algorithm requires constraints expressed by g(x) ≤ 0, where g is a convex function, and

x is a real variable. In the studied model, constraints (2) do not satisfy those conditions.

For instance, the same conditions are also necessary to use the Benders decomposition

of Geo�rion (1972). Attempts at relaxing the convexity conditions have been proposed

by Kesavan et al. (2004) and Bergamini et al. (2008), although these methods were

ine�ective at solving this problem.

The consequence of this nonconvexity is the inability to replicate the results obtained

by Bajwa et al. (2016a) for the isoelastic case, which is why we chose to develop speci�c

methods and compare them only with a commercial solver.

Prior to the use of this software to solve the model, it had to be modi�ed to enhance

its computational tractability. In its current state, the model cannot be solved e�ciently

by a commercial solver.

The modi�ed version of the model is constructed by adding new lower and upper

bounds to limit the solution search space. A comparison of the e�ciency of LINGO

software for the resolution of the model P0 and the modi�ed model P1 is presented in

section 4.
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2.4. Proposed model

The results described in this section are based on the mathematical analysis of (P0)

and more speci�cally on a reformulation with �xed setup variables. The results consist

of new bounds for the decision variables. These bounds cut o� non-optimal values of the

variables.

The �rst bound developed limits the value of the sales variables Sjt.

Proposition 1. :

The optimal quantity of each product j sold during period t is bounded as follows.

S∗jt ≤
αjγjt(1− 1

βj
)βj

(mint0∈{1,..,t}(cjt0 +
∑t−1
k=t0

hjk))βj
, ∀j,∀t (9)

Proof. The proof of this proposition is based on a reformulation of the model (P0) with

a �xed setup con�guration (�xed values of the variables Yjt). The reformulation replaces

four 2-index variables by one 3-index variable. This is a reformulation of the initial model

(P0) with only one variable type.

This new model is based on the notations introduced in the previous section and on

the following notations:

• N = {(j,m, n), j ∈ {1, .., J},m ∈ {1, ..., T}, n ∈ {m, ..., T}, Yjm = 1}

• Ajmn = cjm +
∑n−1
t=m hjt,∀(j,m, n) ∈ N

• Bjn = αjγjn,∀j, n

Here, Xjmn represents the quantity of product j produced during period m and sold

during period n.

The initial variables Xjt, Sjt, and Ijt from model (P0) are replaced by the variables

Xjmn. The relationships between these variables are given as follows:

• Xjt =
∑T
n=tXjtn,∀j, t

• Sjt =
∑t
m=1Xjmt,∀j, t
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• Ijt =
∑t
m=1

∑T
n=t+1Xjmn,∀j, t

The mathematical model, denoted as (RP1), is as follows:

maximize zP =
∑

(j,m,n)∈N

(Xjmn((Bjn)
1
βj (

n∑
l=1

Xjln)
− 1
βj −Ajmn))−

J∑
j=1

T∑
m=1

ajmYjm (10)

such that
J∑
j=1

T∑
n=m

vjXjmn ≤ Cm , ∀m ∈ {1, ..., T} (11)

Xjmn ≥ 0 , ∀(j,m, n) ∈ N (12)

The formulation of equation (10) is based on theorem 1 from Bajwa et al. (2016a) as-

suming that there are no lost sales for the optimal solution. This means that inequalities

(2) are replaced by equalities. Then, Pjt = (
Sjt
αjγjt

)
− 1
βj = (

∑t
m=1Xjmt
αjγjt

)
− 1
βj . By replacing

Pjt with this expression in the objective function (1), we are able to formulate the entire

equation as a function depending only on Xjmn.

In the case of a non-limiting capacity (i.e., constraint (11) is always veri�ed), the

optimal value of Xjmn is obtained by di�erentiating the objective function with respect

to Xjmn, setting this function to 0, and solving for Xjmn. The value obtained is as

follows:

X∗jmn = αjγjn

(
1− 1

βj

cjm +
∑n−1
t=m hjt

)βj
−

n∑
l=1,l 6=m

Xjln. (13)

Without a loss of generality, we may suppose that all of the products sold during

a period are made during only one previous period. Then, because the relationship

between the Sjt and Xjmn variables is given by Sjt =
∑t
m=1Xjmt, the optimal quantity

sold during a period n depends only on one value over all m periods of Xjmn.

This production period is denoted bym∗. It follows then that S∗jt(m
∗) = αjγjt

(
1− 1

βj

cjm∗+
∑t−1
n=m∗ hjn

)βj
.
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Finally, its maximal value over all possible values of m∗ is given as follows:

max
m∗

S∗jt(m
∗) = αjγjt

(
1− 1

βj

mint0∈{1,..,t}(cjt0 +
∑t−1
k=t0

hjk)

)βj
. (14)

The following properties are derived from this inequality.

Corollary 1. For each product, the total optimal quantity produced is bounded as follows.

T∑
t=1

X∗jt ≤
T∑
t=1

αjγjt(1− 1
βj

)βj

(mint0∈{1,..,t}(cjt0 +
∑t−1
k=t0

hjk))βj
, ∀j (15)

A lower bound for the optimal price of each product at each period is also provided.

P ∗jt ≥
(mint0∈{1,..,t}(cjt0 +

∑t−1
k=t0

hjk))

1− 1
βj

, ∀j,∀t (16)

Proof. For the �rst part of the corollary, we start by adding equations (4), (5), and (6)

∀t ∈ T , and the result of this sum is
∑T
t=1Xjt =

∑T
t=1 Sjt , ∀j.

Finally, with the inequality from proposition 1, the following result is obtained.

T∑
t=1

X∗jt =

T∑
t=1

S∗jt ≤
T∑
t=1

αjγjt(1− 1
βj

)βj

(mint0∈{1,..,t}(cjt0 +
∑t−1
k=t0

hjk))βj
(17)

For the second part, the proof starts from S∗jt = γjtαj(P
∗
jt)
−βj (the optimal solution

does not include any lost sales).

By replacing Sjt by its closed-form into (9), we obtain the following:

γjtαj(P
∗
jt)
−βj ≤

αjγjt(1− 1
βj

)βj

(mint0∈{1,..,t}(cjt0 +
∑t−1
k=t0

hjk))βj
(18)

Finally, we have the following:
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P ∗jt ≥
(mint0∈{1,..,t}(cjt0 +

∑t−1
k=t0

hjk))

1− 1
βj

(19)

Remark. Within equations (9), (15), and (16), the term (mint0∈{1,..,t}(cjt0+
∑t−1
k=t0

hjk))

may be replaced by cjt if parameters cjt are constant over time or more generally when

equation cjt ≤ cjt0 +
∑t−1
k=t0

hjk , ∀t,∀t0 ∈ {1, ..., t} is veri�ed.

In the following section, the model considered is denoted by (P1) and is made up of

model (P0) with the addition of equations (9), (15), and (16).

3. Optimization approaches

Using LINGO software to obtain optimal or near-optimal solutions is appealing. How-

ever, it is unsustainable as the solver quickly reaches its limits with an increase in the size

of the instance. In addition, a proof of the optimal solution is unavailable for this prob-

lem when using LINGO to solve it. Therefore, an alternative to LINGO was developed

in this study.

Our approach relies on the fact that, for a given setup (�xed values of Yjt), an optimal

solution can be found by using the model reference adaptive (MRA) search algorithm

developed in Bajwa et al. (2016a).

3.1. MRA algorithm

This algorithm was introduced by Bajwa et al. (2016a), and we present its main steps

in this section, referring to the original study for further details and a theoretical proof.

MRA starts with an initial feasible solution, generates an increasing sequence of objective

values, and terminates at an optimal solution.

The notations for the algorithm are the same as those used in the model (RP1)

presented during the proof of Proposition 1.
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The algorithm is based on two di�erent cases that may occur during a given period:

Case 1: The capacity constraint is not binding for the optimal solution. Then, for a

given m period, the optimal solution is found by di�erentiating zP with respect to Xjmn,

setting it to 0, and solving for Xjmn as follows:

X∗jmn =
Bjn(1− 1

βj
)βj

A
βj
jmn

−
n∑

l=0,l 6=m

Xjln (20)

Case 2: The capacity constraint is binding for the optimal solution. In this case, the

Lagrangian operator can be written as follows: L = −zP+
∑T
m=1 λm(

∑J
j=1

∑T
n=m vjXjmn−

Cm).

Then, for a given m period, the optimal solution may be found as a function of λm:

X∗jmn =

 Bjn
(1− 1

βj
)βj

(Ajmn+λmvj)
βj
−
∑n
l=0,l 6=mXjln if X∗jmn ∈ N+

m

0 if X∗jmn ∈ N0
m

(21)

where N+
m is the set of variables taking a positive value for the optimal solution (the

most valuable), and N0
m is the set of variables equal to zero for the optimal solution (the

least valuable).

It is not possible to obtain a closed-form value for λm here by replacing (21) into

the capacity constraint. Therefore, λm is determined using a bisection method, with the

value in [0,max(j,n)(
1
vj

∂zP
∂Xjmn

(0))].

The purpose of this algorithm is to �nd the variables belonging to the set N+
m and to

�nd the values of λm associated with this set.

This algorithm was proved to be optimal for a given setup, then the main issue

here is to �nd the optimal con�guration, or at least a near-optimal one. Two di�erent

constructive methods have been developed to build this setup con�guration.

These methods use the assumption that the production during a particular period will

occur only if the inventory level is equal to zero at the end of the previous period. This

13



Algorithm 1: MRA pseudocode Bajwa et al. (2016a)

Xjmn = ε , ∀j ∈ {1, ..., J},∀m ∈ {1, ..., T},∀n ∈ {m, ..., T} ;
z0P = 0, s = 0, ∆z = 1 ;
while ∆z > 0 do

s = s+ 1, m = 1 ;
while m ≤ T do

if Case 1 then

Xjmn = max(
Bjn(1− 1

βj
)βj

A
βj
jmn

−
∑n
l=0,l 6=mXjln, 0) , ∀j ∈ {1, ..., J},∀n ∈

{m, ..., T} ;
else

Sort 1
vj

∂zP
∂Xjmn

(0) in non-increasing order,

∀j ∈ {1, ..., J},∀n ∈ {m, ..., T};
Denote Xq as the variable associated with the qth position in the
sorting based on the 1

vj
∂zP

∂Xjmn
(0) values;

qm = 0, q∗m = J ∗ (T −m);
while q∗m 6= qm do

qm = qm + 1;
Determine λm(qm) using the bisection method;
if 1

vqm+1

∂zP
∂Xqm+1

(0) ≤ λm(qm) then

q∗m = qm;

λ∗m = λm(q∗m);
Compute Xjmn from equation (21) ∀j ∈ {1, ..., J},∀n ∈ {m, ..., T};

m=m+1;

Compute zsP from Xjmn;
∆z = zsP − z

s−1
P ;
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assumption was proved to be optimal for a class of incapacitated lot-sizing problems by

Wagner and Whitin (1958). For model (P1), this assumption will not provide an optimal

solution, but it may give a good solution.

To improve the results from the constructive heuristics, several local search moves

have also been implemented.

3.2. Heuristic 1

This heuristic starts with an initial sorting of all products. Then, the entire setup is

set for each product. The con�guration values are set by assigning a setup to a product

and a period if the production capacity associated with this period is able to cover the

optimal sales of several periods, or if the capacity production is able to cover, at least

partially, its own period. Finally, the setup con�guration obtained is evaluated using the

MRA algorithm presented in the previous section.

Four di�erent decision rules are used to sort the products:

• S1: Sort the products according to decreasing values of βj
log(αj)

;

• S2: Sort the products according to decreasing values of αjβj (
1− 1

βj

cjt
)βj−1;

• S3: Sort the products according to decreasing values of αj(
1− 1

βj

cjt
)βj ;

• S4: Sort the products according to decreasing values of ajthjt .

The �rst decision rule is based on a simple evaluation that di�erentiates the products

by their demand parameters. The second decision rule prioritizes the products with the

highest potential revenue. The value used to sort the products is the optimal revenue if

the product is processed and sold during the same period and the production capacity

is su�cient to produce it. This value is determined from model (RP1). For the third

decision rule, the value is the optimal quantity associated with the optimal revenue used

for the second decision rule. Finally, the fourth decision rule sorts the products by using

the ratio between the setup cost and the inventory cost. This last sorting rule prioritizes
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the products with the highest setup cost and the lowest inventory cost, and aims at

minimizing the impact on the total setup cost.

Algorithm 2 summarizes the di�erent steps of the proposed heuristic.

Algorithm 2: Pseudocode of Heuristic 1

Apply one of the four sorting rules;
Initialize all setup values to 0;
Ct,remaining = Ct,∀t;
foreach j ∈ J do

t=0;
while t<T do

if Ct,remaining > αj(
1− 1

βj

cj
)βj then

Yjt = 1 and Yjt1 = 0 , ∀t1 > t such that Ct,remaining ≥
∑t1
k=t vjX

∗
jk,

with X∗jk being the optimal production quantity;
Let t2 be the last period covered by the production;
Update(Ct,remaining);
t = t+ t2;

else if Ct,remaining > 0 then

Yjt = 1;
Ct,remaining = 0;
t=t+1;

else

Yjt = 0;
t=t+1;

Use the MRA algorithm to evaluate the solution;

3.3. Heuristic 2

During each period, the algorithm decides which products to produce, and how many

periods are covered by the production. To determine the best assignment, the algorithm

evaluates the partial solution value. For the evaluation, the remaining unassigned periods

are �lled with the setups (all remaining Yjt are �xed at 1) and the evaluation of the setup

con�guration by MRA algorithm provides the objective value. The setup values for the

remaining periods are �xed at 1 to easily compare the solutions obtained. Owing to this

partial evaluation, the algorithm is able to choose locally the best solution by trying

di�erent setup con�gurations and evaluating them.
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The pseudocode of this heuristic is detailed in Algorithm 3.

Algorithm 3: Pseudocode of Heuristic 2

Initialize all setup values to 0;
tavailable(j) = 1 , ∀j ∈ {1, ..., J};
foreach t ∈ T do

j=1;
while j<J do

if tavailable(j) = t then
Assign the setup for period t of the current best partial solution by
prioritizing product j;
Complete the partial setup con�guration by adding 1 to each
non-assigned setup;
Use the MRA algorithm to evaluate the current con�guration;

j=j+1;

Keep the best solution for all values of j for period t;
Update the best partial solution;
Update tavailable from the partial solution;

Within heuristic H1, the setup variables are product-dependent, whereas for heuristic

H2, the setup variables are time-dependent. In addition, the solutions for heuristic H1

are evaluated at the end, whereas for heuristic H2, the solutions are evaluated after each

step.

To improve the e�ciency of the heuristics, the instances have been solved consecu-

tively from high to low capacity. The algorithm stores the previous solution. It evaluates

this solution with the new capacity alongside the new one, to compare the results and

keep the best one. Because the computational time of the heuristic remains at less than

1 s, it is possible to solve the instances with all di�erent capacity values consecutively

without too much computational e�ort. In addition to this, it may be wise for a company

to determine the solutions for di�erent production capacities to evaluate the bene�ts of

a change in such capacity. For such a company, the modi�cation of the algorithm does

not involve any change in the total computation time.

A solution evaluated with a decreased capacity will nevertheless remain of good qual-

ity because the MRA algorithm is able to re-assign the partial production between prod-
17



ucts. This solution may also be better than that obtained using the heuristics again

because the heuristics tend to increase the total number of setups when the production

capacity is decreased, and the addition of a setup may sometimes be worse than a partial

production.

3.4. Local search procedure

A local search is widely used after the constructive heuristics or metaheuristics are

applied. This helps the algorithms avoid being stuck in a local optimum to obtain a

better solution. Better solutions can sometimes be found by exploring the immediate

neighborhood of the previous solution. Here, the neighborhood of a solution is repre-

sented only by the moves used to modify the solution. This neighborhood representation

prevents an enumeration of all possible feasible solutions, therefore limiting the total

computational cost of this representation.

Three local search moves are proposed. They are all used with a "�rst-improvement"

policy to limit the computational load of the local search.

• Move 1:

� Find two periods for which two products have a setup assigned to both periods;

� Unassign a setup period for each product.

• Move 2:

� Find two periods for which two products have a setup assigned to one period

(not the same for both products);

� Swap their setup assignments for these two periods.

• Move 3: Shift one setup assignment of one product to another available period.

The �rst move is particularly useful for instances with a low capacity, where the

heuristics have trouble reducing the total number of setups. By deleting two setup

assignments at two di�erent periods, the production will be reported to other periods,
18



and the pro�t impact from the total production decrease will be balanced by the cost

decrease owing to the setup removal.

The second move aims at correcting some sub-optimal assignments due to the initial

sorting for H1 or on-time sorting for H2. These sorting rules generate priority for the

products, but the global impact of these priorities cannot be evaluated at the moment of

a decision, and may be easily modi�ed afterwards using this local search move. The third

move has a lower impact than the second one as it a�ects only one product, although it

can be helpful to improve a setup assignment. More speci�cally, the H1 heuristic may

provide an optimal setup assignment for one single product, becoming sub-optimal in

the cases of multiple products, and the third move can rectify this.

4. Computational results

The two heuristics and the local search moves are tested on the instances proposed by

Bajwa et al. (2016a) and Bajwa et al. (2016b). These instances are based on real-world

data. For the second instance, setup costs have been added to adapt the data to our

problem.

The data related to each instance is detailed in Table 1.

The di�erences between the two instances lie mostly in the demand parameters αj

and βj a�ecting the price range of the solutions. In addition to these parameters, several

production capacities ranging between 40 and 110 are tested.

The two instances are tested on four demand scenarios, given by Table 2. These

scenarios impact the demand seasonality γjt for each product. The �rst scenario repre-

sents the case without any seasonality. The second scenario has a low seasonality at the

beginning of the horizon, and a high seasonality at the end. The third scenario is the

opposite of the second one, with a decreasing seasonality. Finally, the fourth scenario

is a mix between the second and third scenarios, with the seasonality depending on the

product.

Table 3 illustrates the e�ect of the improvement of the model when using LINGO
19



αj βj vj cjt hjt ajt
500 1.9 1.0 1.6 0.02 8.5

Instance 1 400 1.6 1.0 1.3 0.05 4.5
600 2.5 1.0 1.5 0.04 7.5
20000 3.5 1.0 3.0 0.035 10.5

Instance 2 18000 4.0 1.0 3.0 0.035 4.5
800 5.5 1.0 1.1 0.013 3.5

Table 1: Data for each instance (Bajwa et al. (2016a), Bajwa et al. (2016b) )

t 1 2 3 4 5 6
0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

Scenario 1 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.1 0.1 0.1 0.2 0.2 0.3

Scenario 2 0.1 0.1 0.1 0.2 0.2 0.3
0.1 0.1 0.1 0.2 0.2 0.3
0.3 0.2 0.2 0.1 0.1 0.1

Scenario 3 0.3 0.2 0.2 0.1 0.1 0.1
0.3 0.2 0.2 0.1 0.1 0.1
0.3 0.2 0.2 0.1 0.1 0.1

Scenario 4 0.3 0.2 0.2 0.1 0.1 0.1
0.1 0.1 0.1 0.2 0.2 0.3

Table 2: Demand scenarios Bajwa et al. (2016a)

Model P0 Model P1

Instances without a feasible solution 10/64 0/64

Average objective value
Instance 1 166.69 224.70
Instance 2 69.80 211.46

Table 3: Comparison of the e�ciency of LINGO solver on models P0 and P1

software to solve it. The �rst row represents the number of instances for which LINGO

software found no feasible solution. The second and third rows show the average objective

function value obtained when solving the instances of type 1 Bajwa et al. (2016a) or type

2 Bajwa et al. (2016b).

The raw results obtained with decreasing capacity are presented in Tables 4 and 5.

Within the LINGO column, the solutions presented are those obtained by the solver for

model P1 with a 3,600 s time limit. LINGO is used along with its "global solver" setting.

On the tested instances, the solver is not able to guarantee the optimality of its solutions.
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The following columns in Tables 4 and 5 represent the results obtained by the two

constructive heuristics. The �rst eight methods (M1 to M8) use the H1 heuristic with four

sorting rules. In addition, methods M5 to M8 use three local search moves to improve

the results obtained by the H1 heuristic. Finally, methods M9 and M10 correspond to

the H2 heuristic, with M10 using a local search. A bold number in the tables represents

the best result obtained with the methods developed. Finally, the lines "Number" and

"Rank" represent the number of best solutions obtained with each method, and the rank

based on these numbers.

Within Table 6, the minimal, average, and maximal gaps (over all scenarios and

production capacities) for each heuristic and each instance are presented. These gaps

are given by the formula gap = zLIN−zM
zLIN

, with zLIN corresponding to the solution

obtained by LINGO software and zM corresponding to the solution obtained by one of

the ten methods. The gap represents the percentage of deviation of the heuristic solutions

compared to the solutions by LINGO.

In Figure 1, the curves represent the gaps between the heuristic results and the results

of the LINGO software. These gaps are averaged over the di�erent demand scenarios,

and are plotted for each production capacity.

The top of the �gure corresponds to the results for instance 1, and the bottom of the

�gure corresponds to the results for instance 2. On the left, heuristics are represented

alone, and on the right, the results are obtained with the use of heuristics and local

search moves.

Table 7 provides the percentage of deviation of the heuristic solutions from the LINGO

software solutions for each instance and scenario (averaged over the capacity values).

As the �rst analysis shown in the tables and �gure, there is no method or sorting

rule that outperforms all other methods on all instances. Methods M4 and M8 are those

performing the best on instance 1. For the second instance, methods M9 and M10 provide

the best results. The gaps obtained for the second instances are also greater (not only
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Gaps M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Instance 1
min 0.00% 0.48% 0.72% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

average 1.11% 2.41% 2.14% 0.56% 0.96% 1.04% 0.65% 0.50% 1.15% 0.90%
max 4.38% 6.47% 4.17% 4.36% 3.76% 5.71% 3.15% 2.77% 4.53% 2.61%

Instance 2
min 1.07% 1.04% 1.15% 0.04% 0.33% 0.15% 0.81% 0.04% -0.15% -0.15%

average 3.64% 2.55% 4.79% 2.49% 2.60% 1.87% 3.25% 1.85% 1.46% 1.18%
max 9.40% 5.09% 14.93% 8.00% 9.27% 5.09% 9.19% 7.55% 4.52% 3.58%

Table 6: Average, min, and max deviation from LINGO solver solutions

the average gaps but also the minimal and maximal gaps) than those obtained for the

�rst instance. In addition, the di�erence between the sorting rules on instance 1 are not

the same as that for the second instance. The local search slightly increases the results

obtained by both heuristics, but performs better for far-from-optimum solutions than for

close-to-optimum solutions.

Sorting rule S4 is the most e�cient rule of the four. This e�ciency may be explained

by its synergy with the way the heuristic assigns the setup values. As the algorithm

assigns less setups to the �rst products in the sorted list, the rule S4 helps the algorithm

decrease the total inventory and setup cost.

For some parameter sets, the best solutions are all found using the same sorting rule,

which is due to the resolution by decreasing the production capacity. This means that

an optimal con�guration for a given production capacity may remain optimal for smaller

capacity values.

From Figure 1, it should be noted that the heuristics are particularly e�cient for

medium and high production capacity values, but less for low capacity values. The low

capacities force the solutions to have a number of assigned setups. It is then di�cult

for the algorithms to decrease the total number of setups. For high production capacity

values, the solutions tend to have few assigned setups, and the removal or addition of a

setup usually has unexpected consequences on the production of other products.

Overall, by taking the best results between the H1 and H2 heuristics, and by using

a local search, the worst solution obtained over every instance and parameter having a

percentage of deviation of only 2.93%, and on average, for each instance and parameter

set, the best solution obtained by either the H1 or H2 heuristic has a percentage of
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deviation of 0.49% compared to the LINGO solver.

Figure 1: Average deviation for the ten heuristic methods compared to LINGO

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Instance 1

Scenario 1 0.85% 2.17% 1.67% 0.97% 0.69% 0.18% 0.24% 0.77% 1.79% 1.21%
Scenario 2 1.52% 2.53% 2.50% 0.61% 1.43% 1.05% 1.06% 0.58% 0.66% 0.66%
Scenario 3 0.51% 2.34% 1.59% 0.36% 0.22% 0.91% 0.48% 0.36% 1.00% 0.92%
Scenario 4 1.57% 2.60% 2.80% 0.31% 1.49% 2.02% 0.82% 0.31% 1.14% 0.82%

Instance 2

Scenario 1 3.62% 2.55% 5.56% 4.45% 2.02% 1.94% 3.28% 3.90% 1.98% 1.57%
Scenario 2 3.94% 2.97% 6.38% 1.98% 3.07% 2.05% 3.79% 1.40% 2.65% 1.93%
Scenario 3 2.27% 2.19% 2.90% 1.71% 1.53% 1.79% 2.19% 0.99% 0.26% 0.26%
Scenario 4 4.74% 2.48% 4.32% 1.83% 3.79% 1.68% 3.74% 1.09% 0.97% 0.97%

Table 7: Gaps for each instance and scenario (averaged over the production capacity values)

5. Conclusion and future research

In this study, we considered the problem of optimizing, simultaneously, production

and pricing decisions while considering a capacity constraint limitation, multi-period

time horizon, and multiple products to maximize pro�ts.
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As the �rst contribution, we propose a non-linear mathematical formulation solved

using LINGO software. On average, this mathematical formulation improves the quality

of the solutions obtained with LINGO software by 84.4%.

The second contribution consists of new constructive methods to solve this problem.

These methods have been proven to be e�cient in providing high-quality results on

literature-based instances, reaching a worst deviation of 2.93% from the solver's solutions.

The results presented in this study have found for an isoelastic demand function and

can easily be adapted to a linear demand function.

As a future extension of this study, an exact method can be developed to replace the

use of LINGO software, and provide a proof of optimality for the obtained solutions.

Finally, the price of a product is not the only parameter impacting the customer's

choice when buying. The guaranteed lead-time can also signi�cantly in�uence their

choices, and for some product categories, customers may have a reference price in mind

from their previous purchases. These parameters may be included in the studied model

to achieve a more accurate representation of industrial problems.
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