Skip to Main content Skip to Navigation
Journal articles

A Fast, Infrared-Active Optical Transistor Based on Dye-Sensitized CdSe Nanocrystals

Abstract : We report an optically gated transistor composed of CdSe nanocrystals (NCs), sensitized with the dye Zinc β-tetraaminophthalocyanine for operation in the first telecom window. This device shows a high ON/OFF ratio of six orders of magnitude in the red spectral region and an unprecedented 4.5 orders of magnitude at 847 nm. By transient absorption spectroscopy, we reveal that this unexpected infrared sensitivity is due to electron transfer from the dye to the CdSe NCs within 5 ps. We show by time-resolved photocurrent measurements that this enables fast rise times during near-infrared optical gating of 74 ±11 ns. Electronic coupling and accelerated non-radiative recombination of charge carriers at the interface between the dye and the CdSe NCs are further corroborated by steady-state and time-resolved photoluminescence measurements. Field-effect transistor measurements indicate that the increase in photocurrent upon laser illumination is mainly due to the increase in carrier concentration while the mobility remains unchanged. Our results illustrate that organic dyes as ligands for NCs invoke new optoelectronic functionalities, such as fast optical gating at sub-bandgap optical excitation energies.
Document type :
Journal articles
Complete list of metadatas
Contributor : Jean-Baptiste Vu Van <>
Submitted on : Tuesday, December 3, 2019 - 9:34:15 AM
Last modification on : Wednesday, December 4, 2019 - 1:38:13 AM





Krishan Kumar, Quan Liu, Jonas Hiller, Christine Schedel, Andre Maier, et al.. A Fast, Infrared-Active Optical Transistor Based on Dye-Sensitized CdSe Nanocrystals. ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, In press, ⟨10.1021/acsami.9b18236⟩. ⟨hal-02390396⟩



Record views