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Abstract

Real-time health surveillance becomes important and necessary with the increase of
the elderly population to preserve their quality of life. Real-time models aim to pro-
vide alerts before the severe illness occurs. Acute respiratory distress syndrome is a
crucial disease of the respiratory system that threats the health of the elderly. This pa-
per proposes a real-time model for the surveillance of ARDS based on belief functions
theory. Non-invasive physiological signals are considered such as heart rate, respiratory
rate, oxygen saturation and mean airway blood pressure. Different linear and nonlinear
parameters are extracted from these signals; then a parameters selection procedure is
performed to reduce their dimensionality. Afterwards, classifiers are constructed using
parameters distributions defined in the evidence framework. Real-time prediction is
then performed by combining all classifiers decisions. As results, high performances
are obtained over the testing sets with performances of 77% and 71% for sensitivity
and specificity, respectively.

Keywords: Acute respiratory distress syndrome; Evidence-based theory; Linear and
nonlinear parameters; Real-time surveillance

1. Introduction

The elderly population is expected to increase from 962 million in 2017 to more
than 2 billion by 2050 [1]. Older people are prone to many pathologies that reduce their
autonomy and may threaten their lives leading to worldwide economic burden. The

s most known elderly-related pathologies are cardiovascular diseases, chronic respiratory
diseases, neurological and mental disorders [2]. A real-time surveillance for elderly
people helps to detect pathologies in advance. Thus it prevents its severity, shortens
lengths of hospital stay and reduces mortality [3]. Real-time surveillance consists of
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continuous analysis of health-related data collected ateal fiime interval to reveal
upcoming illness. It has been the subject of debate for massarchers [4, 5, 6]. In
this paper, we present a real-time surveillance system émteéARespiratory Distress
Syndrome (ARDS).

ARDS is a severe disability of the respiratory system charaed by expanded
pulmonary inflammation [7, 8]. It results in insufficiency g&s exchange with the
blood, associated with high short-term mortality [9]. Ovears, several definitions
had been published until the Berlin Definition was proposead12 [9, 10, 11]. Ac-
cordingly, ARDS is a hypoxemia that develops within one weékew respiratory
inflammation symptoms or a known clinical insult. It is di@ged using the ratio of
the partial pressure of oxygen in the arterial blo®d.(),) over the fraction of oxygen
in the inspired air {703). Moreover, ARDS was classified as mil200 mmHg <
PaOy/FiO2 <300 mmH g), moderate (00 mmH g < PaO2/Fi0O4 < 200 mmH g),
or severe ARDSRPaOs/FiOy < 100 mmHg). All having a minimum positive end-
expiratory pressure (PEEP) of 5 cm®l.

The risk of ARDS increases for patients who have undergorgiazasurgery or
were hospitalized for severe health problems. Dependinthertase, some patients
were transferred from intensive care units (ICU) to wardsvere completely dis-
charged from hospitals. Therefore, the monitoring andyeddntification of those
patients is crucial in order to implement preventative meas Generally, studies con-
ducted on ARDS have used clinical variables to charactérizeto predict its onset.
Some studies have investigated the risk factors associatedARDS [12, 13], others
have developed predictive algorithms for ARDS using chhidata of ventilated ICU
patients, as in [14]. Other researchers have worked on fitppaediction related to
ARDS [15, 16] or respiratory complications [17, 18].

Furthermore, data mining and machine learning techniqreesaely adopted in
biomedical applications to analyze, classify and predietlival data [19]. Classical
machine learning techniques such as k-nearest neighb@f;sn@ive Bayes [21] and
support vector machine [22] are applied on medical dataggrdise or predict a clin-
ical abnormality in physiological signals. However, these lack in the literature of
prediction models and real-time surveillance for ARDS.

This paper proposes a novel algorithm for predicting theuoence of ARDS.
A key point in this surveillance is considering multiple alitsigns that are easy to
collect[23, 24]. Identifying ARDS can be done using just aignal [25], but most
of the serious diseases occur with concurrent irregudariti multiple vital signs [6].
Hence, in this study, physiological signals are analyzedtinaously to identify the
current health state of a patient. Multiple vital signs ased) that are the heart rate,
the respiratory rate, the oxygen saturation and the mewainlood pressure. Instead
of using the whole signals, linear and non-linear pararsetes extracted in real-time
and the most informative ones are selected. After that, digtiten model based on
evidence theory is defined in order to combine informatiothef extracted parame-
ters and generate a decision regarding the health statee qfatient in study. This
model is constructed using the multi-parameter intelligeanitoring of intensive care
Il database.

The outline of the paper is as follows. In the next sectior, ghtient extraction
procedure is presented, and then the evidence-based megihtduced. Thereafter,
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the results are illustrated and interpreted. Finally, acttgion summarizes the paper
and proposes some perspectives.

2. Materials

Subjects are extracted from the multi-parameter intelligaonitoring of inten-
sive care Il (MIMIC II) database. It contains two types ofatamonitor waveforms
and clinical data, collected over a seven years period. Aileetexplanation of the
database can be found in [26, 27]. In this study, the clinidzbbase was consid-
ered first to select subjects, using the values of thei®-/Fi0O- ratios. Hence, an
ARDS group is formed using the definition of both moderate sexkere ARDS with
Pa0,/Fi02<200 mmHg in addition to PEEP levels higher than 5 gi®while a
non-ARDS group included subjects having mild and non ARDi&p#s with PEER:5
cm H,O. After that, the waveform database is matched to the sslettbjects of the
two groups, and their time series are extracted; that ar&ehet rate (HR), the res-
piratory rate (RR), the oxygen saturation (Sp@nd the mean airway blood pressure
(MABP). These time series have a frequency of 1 sample/ntirs [Eads to 140 ARDS
subjects and 135 non-ARDS subjects.

Among the ARDS subjects, there are 50 subjects that stantd ecords after
ARDS diagnosis. These subjects are irrelevant for thisystund thus were eliminated.
Other ARDS subjects started their records before the ofigdDS but stopped before
ARDS diagnosis; these subjects, of number equal to 18, soestiminated. Therefore,
only the 72 subjects having started records before the ARIx®toand last at least
until ARDS occurrence are considered. After that, a pregssing step was required
to smooth the signals and remove the noise. Some subjects@raoved due to noise
or too short signals. This leads finally to 50 ARDS subjectie Tion-ARDS group
is then reduced to have equal number of subjects, leadin@ twB-ARDS subjects
as well. Figure 1 illustrates an example of the four extrétime series for an ARDS
subjects. Within the database of 100 subjects;fald cross-validation technique is
considered to set training databases and testing datal2@edn the following, the
termstraining setandtesting setwould denote any training database obtained at any
step of the cross-validation process with its correspaptdisting database respectively.

3. Evidence-based surveillance approach

The method described in this paper is a real-time methodtbattors the ongoing
health state of patients using their vital signs. Lgf(¢), i = 1,..., 4, denote the four
time series considered in this study for a subjgcecorded at timé, and lett denote
the real-time. Moreover, let; ;(a : b) = (z5.(a), ..., z5,:(b)) be a segment of signal
for subjects going from timea to timed.

3.1. Description of the approach

The aim of this work is to set a mod& from a training set that distinguishes
in real-time between subjects who are going to develop AR&led* + 17, and
subjects who will not, labeled— 1”. The modeN’ takes as input the collected signals
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Figure 1: An example of the extracted time series for an AROIgest

xs,(1 : t), going from the beginning of records until the real-timeand yields as
output a decision whether the subject in study is going telbgvARDS. Instead of
using the whole signals, the proposed approach considexgea \iiindow of length
7 taken at the end of the signals, leading to four segmentét — 7 + 1 : t) to be
analyzed at each time The reason of analyzing the data of a window of length
is to have fixed length signals in computations. Moreoveralnormality is better
and faster detected within a short segment, compared toigiheldngth signal. The
value of r could be taken equal to 6, 12 or 24 hours. In this paper, it tainbd
by an optimization over the training sets, as shown in thiofohg. Then, a vector
of parameters is extracted from these segments at realttifiée beginning of the
signals is yet needed to normalize these parameters. Ttlienaf parameters is then
used with the belief functions theory to assign evidenceatthénealth state according
to each parameter. The parameters are considered as solirdesmation, providing
an evidence regarding each state of the patient at the given tThus, masses are
assigned to each statet- 17 and“ — 1” according to each parameter. The masses are
obtained by means of mass functions defined using the pagasrttracted from the
training set at an earlier offline phase. The masses are thrahined to assign a final
mass to each state. A higher mass assigned to the‘staté€ at timet means that the
subject is predicted to develop ARDS in the future, wherehgher mass to* — 17
means that the ARDS is not yet predicted at the current tirheréfore, for a new test



us  Subject given it signals in real-time, a decision will be mad its future health state at
the earliest possible time.

3.2. Parameters Extraction

The first step of the prediction model is the extraction ofapaeters. Having a
segmentz, ;(t — 7 + 1 : ¢) from each signal at the real-timgseveral linear and non-
2o linear parameters are extracted as follows. In the followin would denote the lower
bound of the considered time interval, thattis,= ¢t — 7 + 1. For linear parameters,

we consider:

e The mean defined as ,
=t

1
Ns,i(t):; Z vsi(0);
l=t—
e The standard deviation
1 =t
Tsi(t)=y| = D (@) = ()
l=t—

The variance is equal to the total power of spectral analysisis, it reflects all
the cyclic components responsible for the variability ia tata [29].

e The skewness known as the third moment. It measures the syyof¢he data
and it is computed using

l=t
ZZ (@, (0) — ps,i(t))?
s,ilt) = = B y
Ss,i(t) Txaii(t)
125 It has been proposed that asymmetric tails to the left shgupobitive skewness

or to the right with negative skewness reflect, respectjvbly acceleration or
deceleration capacity of the time series data, e.g. forthiete signal, it is an
approximate distinction of vagal and sympathetic effeatthe cardiac modula-
tions [30].

e The kurtosis that describes the shape of the probabilityilbigion and is calcu-
lated using the fourth moment of the data,

S @aal0) — paa(t))?

Kty (t) = &5
() T X agﬂ-(t)
130 The kurtosis measures the concentration of the data arbendean and reflects

the rigidity of the signal [31].

On the other hand, non linear parameters are also consjcerguas:
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e The sample entropySampEn), that illustrates the amount of complexity in
data. It is easily applied to any type of time series, inalgddhysiological data
such as heart rate variability and blood pressure variglj82, 33]. It is com-
puted using the negative natural logarithm of the condéigmmobability that a
segment of lengthiv having repeated itself for samples within a tolerance
will also repeat itself foru + 1 samples [34]. Hence, for the segment; of
lengthN = 7, SampFEn is computed as follows,

hsi ]-a
SampEns ;(u,r,7,t) = —In <%> ,

whereu is the length of sequences to be compared, r the toleraneefepting
andh(u, r) is the number of pairs of patterns sequences gfof lengthu whose
distance is less than

e The detrended fluctuation analysis (DFA), that measuresdhkng behavior of
a segment [35]. Itis defined by the short and long range sgaliponentFA,
andDFA,. To perform detrended fluctuation analysis for a segmentt — 7+
1: 1), the integrated seriegu), u = 1,..., 7, is first computed

qu (4t —7)— ps,i(t)]
=1

Then,y(u) is divided into time segments of size and a local trend,, (u) is
obtained by a least-squares line fit and subtracted fy6m). The fluctuation
f(n) for segments of length is calculated as follows:

o= o -

The fluctuationf (n) is computed for different segment sizesthen a graph of
log f(n) againstlogn is constructed. Finally, the scaling exponeh#sA; and
DFA, define, as their names denote, the slope of the relation batwe f(n)
andlog n for ranges of low and high values of

=

DFA has been used to assess the self-similar correlatioh&dime series [36].
It has also been described as a measure of “roughness” imgtieds with higher
scaling exponents representing a smoother time series [37]

Having the four measured signals, these computations eagvien parameters
per signal and thus twenty-eight parameters, for each subjat each time. Let

s psi(t), 7 =1,...,28, denote these parameters. For many health conditiongethest

150

in vital signs differ among patients. Thus, normal is a ieéastate for each patient,
that differs with age, weight, medical history, etc. Heniostead of using the raw
values of the parameters, a normalization phase is perfbateording to each patient.
Therefore, a first segment of lengthis considered from each signal, ;(1 : 7).

It corresponds to the initial state of the patient that isuassd to be its stable one.
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Then, the different parameters are computed for the irgégiments. Lep(o) denote
their initial values. Then, for each real-time measurentbetobtained parameters are
normalized, by computing their ratio to the parametersefitist segmeng; ; (¢ )/p(o)

In the following,p, ; would denote the normalized parameter, for simplicity.

Note that, a parameter selection would be performed in thi@®phase using the
training set to keep only informative one. More details aveigin Section 3.4. In the
following, let .J be the set of indices of the selected parameters, angthuis), j € J,
are the normalized parameters extracted at real-tifrean a subject signals.

3.3. ARDS prediction with Belief functions

The theory of belief functions, also called Dempster-Sh#feory, is introduced
for the analysis of imperfect information[38, 39]. This t¢ing makes it possible to
illustrate the uncertainty and imprecision of informatiolt also takes into account
ambiguities and conflicts between sources. The belief fonsttheory operates on a
frame of discernmen® which consists of a finite set containing mutually exclusive
propositions. In this study, there are two groups of subje&RDS labeled'+1” and
non-ARDS labeled —17. ThenQ = {+1,—1}. Let 2 be the set of all possible
subsets of?, it is then defined by:

“ ::{ma{%71}a{471}a{‘kla‘71}}'

While () denotes that the state of the subject is neither ARDS, notARDS, which
means impossibility{ +1, —1} denotes ignorance and thus ambiguity.

3.3.1. Basic concept
The main concept relies on the modeling of the evidence gealvby the extracted

parameters. Information given by a source, that is a paemen be represented by
a basic belief assignmerfBBA), also named mass function [40]. Let;(-) be the
mass function associated to the paramgjeiThen,m;(w, s, t) reflects the strength of
evidence supporting a subset 2% according to the value of the parameteiat time
t. In other wordsim; (w, s, t) represents the part of evidence saying that the state of the
subjects falls in w at timet¢. The mass function should have the following properties
Vs, t:

m;(0,s,t) =0,

mj(w,s,t) — [0,1], forw € 2%, (1)

> mj(w,s,t) =1
we
In order to construct the mass functions related to eachpete, the training sets

are considered. For ARDS subjects of a given training setlabt segments of their
signals are used to compute their parameigrs= p; ;(T5), T being the length of the
signals of an ARDS subjest The reason of this choice is that the end of the signals
precedes directly the occurrence of ARDS and thus contagsslynits instability. For
non-ARDS subijects, the more the segments approaches thimegof the signals,
the more we are sure of the stability of the subject, since ftassible that a subject
labeled non-ARDS develops the ARDS after recordings. Tthenparameters of non-
ARDS are computed using segments selected from the whalipbiag of the signals,
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following the first segments. Lét, ; andS_; be the sets of indices of ARDS and non-
ARDS subjects of the training set respectively. Then, ndized parameters databases
ps,j» 8 € St+1, andpy ;, 8 € S_4, are obtained. Afterwards, for a parameter type
J, the pdfs are estimated using (1) only ARDS parameters salug s € Si1, (2)
only non-ARDS value, ;, s € S_; and (3) parameters of both classes;, s €
Si1US 1. LetQj 413(+), Qj—13(-) and@; r41,—1)(+) denote the estimated pdfs.
These distributions could be obtained by fitting the histogs of the parameters to all
the classical distributions. Then, in the online phasejritpa computed parameter
ps.;(t) atthe real-time, the mass assigned to each subsefbis given by

Qjw(ps,i (1))
> Qiuw(ps;(t)

w’' €29 W' #£P

mj(wasat): ,WEQQ,W#(Z), (2)

whereasn; (0, s,t) = 0. Figure 2 illustrates an example of such a computation. The
plot shows the distributions of the normalized standardat®n of respiratory rate
signals parameter for ARDS subjects of a training databasgraight thick line, the
one for non-ARDS subjects in dashed line and the one of aJestsin straight thin
line. Moreover, the plot shows the mass assignment for twmopsgameter valuqa;(zl)
andp§2). The first parameter value falls in the distribution of ARD®jects and the
second is in the middle of ARDS and non-ARDS distributionshéW assigning the
masses of each value from Eq. (2), the assigned map%’olfrom Qj,{+1; is higher
than those 0€); (1 andQ; (41,1} Thus, the decision obtained from the parameter

pél) is the state of +1}. On the other hand, for parameﬁé?), the distributions of
{+1} and{—1} are too close, leading to similar masses from both. Howéngher
mass is associated in this case to the distributiofiHef, —1}, thus introducing the
ambiguity of such case. The mass assigneghtd, —1} is higher than those df+1}
and{—1} in all the cases where these distributions are too closes. figure illustrates
the effectiveness of the evidence-theory concept by imgeaimbiguities when dealing
with close data and thus avoiding erroneous decisions.

3.3.2. Discounting

Since we are working on parameters extracted from humarebgpitlie information
cannot be completely reliable. Hence, a discounting ojmerdd needed to take into
consideration the reliability of the information providbeg each parameter [39, 41].
This operation transforms each mass function to a lessnrdtive one, based on the
degree of reliability of the source. Moreover, in this apgmio, it is possible to estimate
its reliability according to each state, leading to a cottekdiscounting [42, 43]. Let
Bjq+1y = 1 —aj 41y andB; (—1y = 1 — a; (1) be the degrees of reliability of a
parametep; knowing that the true state is4 1”7 and“ — 1”7 respectively. Then the
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Figure 2: Mass assignment of new computations in the caseeafdrmalized standard deviation of respira-
tory rate signals.

discounted mass functichn; assigned tg; is given by

“mi({+1},5,t) = B —1ym; ({+1},5,1),

amj({_l}v 5, t) = Bj,{Jrl}mj({_l}a S, t),

m;(Q,s,t) =m;(Q,s,t) + a; (—iym({+1},5,1) + o (rym; ({ =1}, 8, 1),
*m;(0,s,t) = 0.

3)
The error rates; 1y anda; ;_;y could be estimated using the distribution func-
tions ;... Knowing that a subject state is equal to' + 17, an error is made in
evidence assignment if a higher mass is given to any sub$eotfer than{+1}. Itis
also the same fof—1}. Then,o; ., w = {+1} or {1}, is computed for all parame-
ter values, wher€); ., (p) is less than any, .- (p), for w’ # w € 2%. Therefore, it is
defined as follows:

o = € = /D Qy0(p)dp, @)
J,w

whereD; ., = {p|Q;.(p) < Qj.w (p), Vo' € 2% W' # w}.

3.3.3. Combination

Once the discounted masses of the different parametersameuted, they can be
combined using the normalized conjunctive rule of combhamafrom the Dempster-
Shafer theory. By doing this computation, one obtains a ndoemative mass func-
tion, leading to more efficient estimation. The combinatbthese masses is denoted
by & and defined by the following equation:

> I1 (a)mj(w/(j)7 s,t)

Nw!’(G) =w je.]

1- Z H (a)mj(wl(j)asat)'
Nw'@=pjeJ

(5)

mg(w,s,t) =
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3.3.4. Decision making

Finally, to make a decision on the health state of a subjethhe mass function
mg defined ort2 is transformed to a probability measure over the singletattsthe
pignistic transformation defined by:

!
t
BetPw,s,t)= 3. %,\meg, ©6)
w

forw = {+1} or {—1}. In this way, the final mass df+1, —1} subset is divided
between{+1} and{—1}. The state having the highest pignistic level is selected fo
each subject at every time Thus, a decision is made over the health state of subject
whether he will develop ARDS based on its recordings, andenhia generated for a
positive decision.

To make a final decision from the real-time analysis abouhtadth state of a pa-
tient, itis also possible to wait for successive positiveisiens. Here, a threshold must
be defined as being the number of successive ARDS decisie@ugddo decide if the
patient is going to develop ARDS. This is done by applyingdlgorithm iteratively
on the total length of the signadsof the training set, then different numbers of succes-
sive positive decisions are considered and the performiadeses are computed for
each number, that are the sensitivi§e] and specificity §p) indexes, also called true
positive rate and true negative rate, respectively. Trestiold of successive ARDS de-
cisions is obtained thereafter by maximizing the Youdewrig#fouden = Se+Sp—100,
over all the considered numbers.

Waiting for successive positive estimations overcomesaliemn of islolated abnor-
malities and leads to a higher specificity of the algorithm.

w’ €22, wCw’

3.4. Selection of parameters

Instead of considering all the extracted parameters in thdem it is relevant to
select the most informative ones with less error rates. Pphis of the algorithm
consists of ranking the parameters according to their eates and then perform-
ing a sequential forward selection (SFS) of parameters. [44énce, an error rate
e; is computed for each parametey, which is the average of conditional errors,
€j = (€j{+1} + €,{-1})/2. The conditional errors; ., are computed using (4). A
global ranking of parameters is performed. Parameters albrsignals are ordered
from the lowest error obtained to the highest one.

Once the parameters are ranked, a sequential forwardiselgecbcedure is per-
formed. One parameter is added at a time and performanceasdé the model are
computed. For each added parameter, the belief model igedgplreal-time for all
the subjects of the training set and a decision is generatezhth of them. The sensi-
tivity and specificity indexes are computed. Thereafterypve is plotted and updated
at each iteration illustrating the sum of the performanaeies obtained versus the
number of parameters. Whenever a new value added to the shoves a decrease
in the performance higher than a valughe SFS procedure ends and the parameters
obtained are maintained.

In addition, in order to take into consideration the depewdeof the parameters,
the correlation between the added parameter and the exjsimmeters is tested and

10
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Table 1: The most significant parameters for each signaimpeters having a p-value 0.02 are shown.
Mean+ standard deviation are shown for each parameter.

Signal | Parameters ARDS group non ARDS group
mean 1.0297 + 0.1439 1.0218 £ 0.0935
HR Sk —1.875+6 —3.3629 + 31.2769
Kt 1.0628 + 0.4082 1.2803 + 0.6892
SampEn 1.2277 4+ 0.6079 1.0231 +0.1371
o 1.6226 £ 1.4729 0.9209 + 0.2851
RR Sk —0.8592 + 10.6885 1.0231 £+ 3.3186
Kt 1.0172 £ 0.5052 1.3381 £ 1.2061
SampEn 1.4088 + 0.5191 1.0281+0.2
Sk 0.6881 4 4.0655 3.1707 4+ 14.2335
Spo, Kt 1.0871 + 0.5252 1.0907 £ 0.8359
SampEn 1.2836 + 0.6092 1.5598 £ 0.982
DF A, 0.8678 + 0.1777 1.0172 £ 0.2767
DF A, 1.0289 + 0.1349 1.0194 £ 0.0667
MABP 1 1.0262 + 0.1246 0.9868 4+ 0.072
Sk 0.6396 + 1.6238 0.5796 £+ 8.2055
DF A, 0.9432 4+ 0.1459 1.0743 £0.3192
DF A, 0.9985 4+ 0.0178 1.0022 £ 0.0397

compared to the selection procedure alone. If any coroslatbefficient between the
parameters presents avplue < 0.05 then the parameter is considered correlated with
an existing one, thus it is eliminated from the selectiorcprlure.

4. Results

As mentioned above, two types of parameters were extracatdach time series.
Linear parameters are the meanthe standard deviatiosm, the skewnessk and the
kurtosiskt. Non linear parameters are the sample entt®@y:p En, and both factors
from the detrended fluctuation analydi¥'A; and DFA,. For sample entropy, the
value ofu is taken equal to 5, andequals 0.2, as mentioned in [45]. For the detrended
fluctuation analysisDFA; is calculated between the range= 4 andn = 16 and
DFA, is calculated between = 16 andn = 64, as shown in [35]. The results are
obtained by a 5 fold cross validation repeated 10 times. Reriltustration of the
approach, presented in Sections 4.1, 4.2 and 4.4, only aiménty and one test sets are
considered, then all the sets are considered for the peafizenevaluation in Section
4.5,

4.1. Statistical analysis

First, a statistical analysis is performed to identify paeters that show a signif-
icant difference between ARDS and non-ARDS groups. For @achmeter, values
were compared between both groups using the two-samplst FAe-value < 0.02
was considered as significant. Results are presented ie TalDifferent linear and
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Figure 3: Ranking of parameters according to error ratedy @Parameters having an error lower than 0.4
are included in the figure.

non-linear parameters for each signal has shown signifttiiatence between groups.

It can be noted from the table that distributions of non ARD8ug are more asym-
metric than ARDS group for all the signals from the valueskafgness. In addition to
being asymmetric, kurtosis shows that distributions of ARDS group for HR, RR
and SpQ have heavy tails. Moreover, RR’s distribution is widely el in ARDS
group according te. For ARDS group, sample entropy is higher in HR and RR sig-
nals; while it is lower in Sp@. Detrended fluctuation analysis factors are generally
higher in non ARDS group for Spand MABP signal.

4.2. Parameters Selection

Since there is a high number of parameters, a ranking of fheseneters based on
the error rates is performed. The ranking is illustratedigufe 3. Parameters having
error rates higher than 0.4 are not presented. The resulmel from the error rate
ranking in the figure are confirmed from the statistical asialghown in Table 1. As
shown, most of the parameters that have low errors in Figaledshowed a significant
difference in the table. This figure shows that the standavéhtion extracted from RR
signals presented the lowest error rate among all parasnexéracted from the four
signals, thus ranking at the top.

From these ranked parameters, a sequential feature selesctionsidered to reduce
the input vector of the belief computations. Figure 4 iltats the selection procedure
on the training set for both cases with and without correfeti The plot shows the
accuracy as a function of the indicators of the ranked patensie The accuracy is
defined by the proportion of correctly identified subjectsoamthe total number of
subjects. A marker is placed on the curves when a paramesaldsted. Starting
with o from RR, the parameters presented in Figure 3 are added re@jlyeuntil
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the accuracy decreases more than 5%. For the correlation study, if a parameter
shows a correlation with any existing parameter with-@afue lower than 0.05 it is
excluded from the selection. The simple selection procefinished on the insertion
of the seventh parameter that§é from RR. Thus, six parameters are selected in the
simple SFS procedure which ag&: and SampEn from HR, o and SampEn from
RR, Sk from both SpQ and MABP. However, there is no decrease in the accuracy of
the model in the correlation study but the accuracy is loWwantthat obtained from the
simple selection.

4.3. Selection of the alert generation threshold

In order to make a decision on the health state of a new tegcylk threshold
must be defined from the training set. Therefore, we sweepatue of successive de-
cisions on the intervdll, ..., 30] hours and the performancés and.Sp are computed.
The threshold that maximizes the Youden index is then censdl Figure 5 illustrates
the ROC curve of the proposed algorithm by taking the fusiothe first six parame-
ters obtained in the previous section. The plot shows thlebfitimal cut-off value is
obtained for thresholé- 20 hours withSe = 81.4% and.Sp = 83.78%.

4.4, Selection of window size

As described in the real-time model we have used a fixed+ewgidow for ex-
tracting the parameters vector for all subjects. Thus,ehextion of the size of the win-
dow is important in this study. A short window may not contaimugh information
and a long window may eliminate an abnormal change in theakidifferent window
sizes are evaluated in this study, values are considerbd rahge4, 6, . . ., 24] hours.
Figure 6 illustrates the accuracy for each window size (inrBpas well as the number
of selected parameters and the threshold shown as a couptéoém of parameters,
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Figure 5: ROC curve for the selection of the threshold fortajenerating.

threshold). As shown in the figure, window size24 hours presents the highest accu-
racy of 82.5% on the considered training set. These valwethan considered for the
following.

4.5. Performance Evaluation

After the illustration of the extraction and selection oé tharameters, the model
is tested on the test sets. In this section, results arenmutdly a 5-fold cross vali-
dation repeated 10 times. Table 2 presents the performdresch added phase to
obtain at the end the performance of the complete proposeim®he modeling of
the data by associating and combining masses from all trepers leads to a sen-
sitivity of 70.23% and a specificity of 71.74% over the tramisets and Se = 70.16%
and Sp = 67.89% over the test sets. However, when the panaseéetion phase
was performed, an enhancement in the sensitivity was notedtoe training sets (Se
= 78.10%, Sp = 66.91%) and the test sets (Se = 72.59%, Sp =%).16 addi-
tion, discounting the mass functions using the error ratgsdved the performance to
81.65% of sensitivity and 74.72% of specificity over thertiiag sets and 77.24% and
71.25% for sensitivity and specificity respectively oves test sets. However, when
the correlation was considered in the selection phase tfierpgences decreased with
Se = 80.18% and Sp = 69.29% over the training sets and 74.10%, 61.12% over the
test sets.

4.6. Comparison to the state-of-the-art methods

The proposed model is compared to some classification tggagisuch as Bayesian
hypothesis test, k-nearest neighbors (KNN) and SVM. TheeBiay hypothesis test is
based on Bayes theorem. It is a probability model that ctmeisfactorizing a joint
probability distribution into a set of conditional distutions for each variable. The k-
nearest neighbors is one of the basic algorithms in mackaraing. It classifies a new
observation to a class by choosing the majority class anfumg hearest neighbors in

14



85 \

80-
(4,20) (7,18) 16.1)
75 (14,12) ’

70- (8,24) 16,1)

Accuracy (%)

65
(10,24)

60
(13,24)

[ = 1 1 1 1 1 1 1 1 1
S 4 6 8 10 12 14 16 18 20 22 24

window length (in hours)

Figure 6: Changes in the accuracy over the training set witflews length. Values in the figure denote
(number of parameters, threshold).

Table 2: Performance of the proposed model and the influeheach phase.
Method training set test set

Se(%) Sp(%) Se(%) Sp(%)

BF without discounting, nor selection| 70.23 71.74 70.16 67.89

BF without discounting 78.10 6691 7259 61.16
complete BF model 81.65 74.72 77.24 71.25
complete BF model+corr 80.18 69.29 74.10 61.12

the training set. A ten-fold cross validation was perforredbtain k that minimizes

the test loss. The optimal k was found to be 8. As for SVM, it ias/en to be a good
s model to classify data. It can be used to differentiate thia daing a decision bound-

ary that produces the optimal separation of classes. Tableo®s the performance

indexes of the proposed model compared to these descritietideies. As shown, the

proposed model outperforms the kNN, the SVM as well as the&iap tests, that are

a simplest form of the evidence theory where the ambiguitéda/een the sets are not
s considered. These results show the importance of the pedpusdel.

Table 3: Comparison to state-of-the-art classificationhods$

Method Sensitivity (%)  Specificity (%)
KNN 59.20 79.75
Bayesian test 67.74 65
SVM 58.67 74.06
The proposed Model 77.24 71.25
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5. Discussion

This study proposed a real-time model, based on the beliedtifons theory, for
predicting ARDS prior to its onset. ARDS results from inflaatory alveolar injury
occurring progressively [46]. The process begins with testaiction of the barriers
of the alveolar membranes resulting by increasing the #vemermeability. Then,
injuries progress causing decreased pulmonary compliahih leads to pulmonary
hypertension and refractory hypoxia [47, 48]. Moreover,D'Rhas been linked to
clinical features such as severe dyspnea, tachypnea awddym according to [49].
Other studies on the clinical profile of ARDS had shown thas iassociated with
breathlessness, hypotension, tachypnea [50] and tacliggad]. Although, there are
no clear clinical features for ARDS, it is evident that ARZSinked to cardiorespira-
tory and cardiovascular mechanisms. Therefore, the feaksigns that are considered
are the heart rate, the respiratory rate, the oxygen settnratd the mean airway blood
pressure. However, there is a lack in the literature for theracterization of ARDS
using feature extraction.

In feature extraction techniques, parameters are extrfctm raw data signals and
pertinent ones are selected to enhance the fusion perfeen@he characterization of
signals using the extraction of parameters has been wigbljeal in biomedical ap-
plications. For instance, an analysis of heart rate vdiiyaloiuring syncope was con-
ducted by extracting parameters such as the mean, the siadheldation of the RR
interval and non linear parameters such as the sample grarapthe detrended fluc-
tuation analysis [52]. Moreover, linear and non-lineargpagters were extracted from
heart rate variability signals for ARDS subjects to analtfzer response to alveolar
recruitment manoeuver [53]. Only few studies have consd@ther cardiovascular
signals than heart rate, like blood pressure and oxygematem signals [31, 54]. A
characterization of heart beat and blood pressure for thalgatients using time do-
main parameters such as the mean, the standard deviatosketvness and the kur-
tosis was studied in [31]. In addition, detrended fluctuatmalysis was extracted
from blood pressure signal to study its dynamics througlgisat procedure in rats
[55]. In [33], a characterization of periventricular leukalacia, a brain injury affect-
ing infants, is proposed by extracting minimum, maximumamevariance, skewness,
kurtosis, energy of wavelet coefficients and sample entfapy heart rate, mean ar-
terial blood pressure and oxygen saturation. From whategieat, we can conclude
that the extraction of parameters from different physiatabsignals might help in the
characterization of physiological aspects related tors¢yathologies, such as ARDS.

Hence, in this paper, linear and non-linear parameters @dracted from the time
series as mean, standard deviation, skewness, kurtosiplesantropy and detrended
fluctuation analysis. Linear parameters provide infororategarding the distributions
of the data. Distributions were shown to be asymmetric, itgawide tails and being
widely spread. This verifies that biomedical data are nosgian [56]. Conversely,
it was found that heart rate and respiratory rate had higln@pse entropy in ARDS
group, thus increased complexity [57]. However, oxygenrsdion presented lower
complexity in ARDS subjects. In other terms, Sp@resents more similarity in the
data. FromDFA; and DFA, values, we can notice that Sp@nd MABP had lower
correlations in ARDS subjects [36].
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Moreover, feature fusion is performed using the belief fioms framework. The
proposed belief functions framework defines ARDS and no>SRjroups based on
the probability distributions of the data according to epabameter. In addition, these
models consider supper subsets instead of consideringsaomyetons subsets, thus
they introduce the notion of ambiguity between choosing &D& or non-ARDS
states. The belief theory also takes into account the iétiabf each source of in-
formation presented by the discounting operation. Thelbéity of the sources is a
very important characteristic, especially when workingwparameters extracted from
physiological signals. On top of these comes the importahbelief functions frame-
work, that is the modeling of the data even with missing rdtwys. It often happens
that some signals are missing in some part of the recordiegsuse of disconnected
electrodes or a sudden movement of the patient. Unlikeicklsdata mining tech-
niques, the belief functions guarantee that missing paterheue to missing signals
will not affect the overall performance of features fusion.

From the results, the reduction of the number of parametgrperforming a se-
lection procedure, improved the sensitivity of the model seduced the complexity of
the computations as well. This way only parameters haviwgloor rates are included
in the model and the combination that presents the best dmcairacy is considered.
Thus, the modeling of the data is done using the minimum amafuparameters in-
stead of using all the extracted parameters. Then, thesioeiwf the conditional reli-
ability of each source has led to an enhancement in the ancafdhe model over the
training and the test sets. Each parameter gives informatigarding the patient and
the reliability of the parameter itself in distinguishingtiveen states. Finally, 77% of
ARDS patients are correctly identified in real-time befdre éccurrence of ARDS and
only 29% of non-ARDS patients are misclassified and consitless possible devel-
opers of ARDS. The obtained results demonstrate, besidaltbady existing studies
on ARDS, that ARDS is linked to cardiorespiratory and cavegzular mechanisms.
More importantly, ARDS can be predicted using non-invapivgsiological signals in-
stead of using clinical exams or variables that necesdit@resence of subjects in
hospitals for long period [15, 16, 14].

It is shown from the results that this model outperformeddiassical classifiers
tested similarly on the data. It is worth noting that the Isage tests perform only on
singletons and the state membership is determined by camgphie likelihood ratio.
However, the added ambiguity set in the proposed evideaseebmodel may affect the
final decision since it is considered in both discounting emmhbination phases. Thus,
the advantage of such models over the classical classéigusgially the bayesian tests,
is the inclusion of higher order sets that illustrate the ity intervals.

Previous studies were conducted on the prediction of AROIBeomortality related
to ARDS using computed tomographic images [16] or clinicaiables [15, 14], that
necessitate clinical exams or the presence of subjecteihdbpitals for long periods.
However, the approach proposed in this paper uses onlysigtas that can be collected
using non-invasive techniques, thus without disturbirggbbjects. Moreover, these
studies present general statistical models to detect ARB&aing that all subjects will
present similar changes; while this approach is a subjes¢d one that considers an
initial stable state for each subject and computes the oggoarameters with respect
to the stable state. In addition, an information fusion wasdted using the evidence
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theory to consider the ambiguity and unreliability of theses. Finally, this approach
achieved good performances for both sensitivity and spé#gifindexes for the real-
time surveillance of ARDS.

6. Conclusion

This paper proposes an evidence-based model for the pogdadt ARDS in in-
tensive care unit patients. This work presents severatiboitions. Non invasive vital
signs are included in the study for many reasons, the fadfitheir acquisition, the
possible integration in home surveillance systems anditikebletween these signals
and the risk factors associated with ARDS. Linear and noedi parameters were
computed and considered the source of information, sineg ¢an give information
about the properties of a signal more than the signal itdeiprecision and unrelia-
bility of information sources were considered by the bdiigfctions model. It assigns
masses to each subset computed from a predefined trainingIsen, these masses
were discounted and combined according to the reliabifityach source of informa-
tion. This model is then extended to reduce the dimensiohefrtput by performing
a parameter selection procedure. This model has achiegadoeirformances in both
ARDS and non-ARDS groups. In addition, it outperforms st#tthe art techniques.
Further work must be done to extract more parameters thaideg@vidence on dif-
ferent characteristics in the signals. Moreover, it wowddriteresting to establish the
relationships between the changes in time series and tb@®egascular mechanism. A
further study on the parameters selection will also be dtmtgke into consideration
the dependance of parameters from the beginning of theteelgrocess.
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