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Abstract

Real-time health surveillance becomes important and necessary with the increase of
the elderly population to preserve their quality of life. Real-time models aim to pro-
vide alerts before the severe illness occurs. Acute respiratory distress syndrome is a
crucial disease of the respiratory system that threats the health of the elderly. This pa-
per proposes a real-time model for the surveillance of ARDS based on belief functions
theory. Non-invasive physiological signals are considered such as heart rate, respiratory
rate, oxygen saturation and mean airway blood pressure. Different linear and nonlinear
parameters are extracted from these signals; then a parameters selection procedure is
performed to reduce their dimensionality. Afterwards, classifiers are constructed using
parameters distributions defined in the evidence framework. Real-time prediction is
then performed by combining all classifiers decisions. As results, high performances
are obtained over the testing sets with performances of 77% and 71% for sensitivity
and specificity, respectively.

Keywords: Acute respiratory distress syndrome; Evidence-based theory; Linear and
nonlinear parameters; Real-time surveillance

1. Introduction

The elderly population is expected to increase from 962 million in 2017 to more
than 2 billion by 2050 [1]. Older people are prone to many pathologies that reduce their
autonomy and may threaten their lives leading to worldwide economic burden. The
most known elderly-related pathologies are cardiovascular diseases, chronic respiratory5

diseases, neurological and mental disorders [2]. A real-time surveillance for elderly
people helps to detect pathologies in advance. Thus it prevents its severity, shortens
lengths of hospital stay and reduces mortality [3]. Real-time surveillance consists of

∗Corresponding author
Email addresses:aline.taoum@utt.fr (Aline TAOUM ), farah.chehade@utt.fr (Farah

MOURAD-CHEHADE),hassan.amoud@ul.edu.lb (Hassan AMOUD)

Preprint submitted to Elsevier November 19, 2018

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1746809419300163
Manuscript_3e7d30f0df859ef7ace4d72112b3575d

http://www.elsevier.com/open-access/userlicense/1.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1746809419300163


continuous analysis of health-related data collected at a fixed time interval to reveal
upcoming illness. It has been the subject of debate for many researchers [4, 5, 6]. In10

this paper, we present a real-time surveillance system for Acute Respiratory Distress
Syndrome (ARDS).

ARDS is a severe disability of the respiratory system characterized by expanded
pulmonary inflammation [7, 8]. It results in insufficiency ofgas exchange with the
blood, associated with high short-term mortality [9]. Overyears, several definitions15

had been published until the Berlin Definition was proposed in 2012 [9, 10, 11]. Ac-
cordingly, ARDS is a hypoxemia that develops within one weekof new respiratory
inflammation symptoms or a known clinical insult. It is diagnosed using the ratio of
the partial pressure of oxygen in the arterial blood (PaO2) over the fraction of oxygen
in the inspired air (FiO2). Moreover, ARDS was classified as mild (200 mmHg <20

PaO2/F iO2≤ 300mmHg), moderate (100 mmHg<PaO2/F iO2≤ 200mmHg),
or severe ARDS (PaO2/F iO2 ≤ 100 mmHg). All having a minimum positive end-
expiratory pressure (PEEP) of 5 cm H2O.

The risk of ARDS increases for patients who have undergone cardiac surgery or
were hospitalized for severe health problems. Depending onthe case, some patients25

were transferred from intensive care units (ICU) to wards orwere completely dis-
charged from hospitals. Therefore, the monitoring and early-identification of those
patients is crucial in order to implement preventative measures. Generally, studies con-
ducted on ARDS have used clinical variables to characterizeit or to predict its onset.
Some studies have investigated the risk factors associatedwith ARDS [12, 13], others30

have developed predictive algorithms for ARDS using clinical data of ventilated ICU
patients, as in [14]. Other researchers have worked on mortality prediction related to
ARDS [15, 16] or respiratory complications [17, 18].

Furthermore, data mining and machine learning techniques are widely adopted in
biomedical applications to analyze, classify and predict medical data [19]. Classical35

machine learning techniques such as k-nearest neighbors [20], naive Bayes [21] and
support vector machine [22] are applied on medical data to diagnose or predict a clin-
ical abnormality in physiological signals. However, thereis a lack in the literature of
prediction models and real-time surveillance for ARDS.

This paper proposes a novel algorithm for predicting the occurrence of ARDS.40

A key point in this surveillance is considering multiple vital signs that are easy to
collect[23, 24]. Identifying ARDS can be done using just onesignal [25], but most
of the serious diseases occur with concurrent irregularities in multiple vital signs [6].
Hence, in this study, physiological signals are analyzed continuously to identify the
current health state of a patient. Multiple vital signs are used, that are the heart rate,45

the respiratory rate, the oxygen saturation and the mean airway blood pressure. Instead
of using the whole signals, linear and non-linear parameters are extracted in real-time
and the most informative ones are selected. After that, a prediction model based on
evidence theory is defined in order to combine information ofthe extracted parame-
ters and generate a decision regarding the health state of the patient in study. This50

model is constructed using the multi-parameter intelligent monitoring of intensive care
II database.

The outline of the paper is as follows. In the next section, the patient extraction
procedure is presented, and then the evidence-based methodis introduced. Thereafter,
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the results are illustrated and interpreted. Finally, a conclusion summarizes the paper55

and proposes some perspectives.

2. Materials

Subjects are extracted from the multi-parameter intelligent monitoring of inten-
sive care II (MIMIC II) database. It contains two types of data: monitor waveforms
and clinical data, collected over a seven years period. A detailed explanation of the60

database can be found in [26, 27]. In this study, the clinicaldatabase was consid-
ered first to select subjects, using the values of theirPaO2/F iO2 ratios. Hence, an
ARDS group is formed using the definition of both moderate andsevere ARDS with
PaO2/F iO2≤200 mmHg in addition to PEEP levels higher than 5 cmH2O; while a
non-ARDS group included subjects having mild and non ARDS patients with PEEP<565

cm H2O. After that, the waveform database is matched to the selected subjects of the
two groups, and their time series are extracted; that are theheart rate (HR), the res-
piratory rate (RR), the oxygen saturation (SpO2) and the mean airway blood pressure
(MABP). These time series have a frequency of 1 sample/min. This leads to 140 ARDS
subjects and 135 non-ARDS subjects.70

Among the ARDS subjects, there are 50 subjects that started their records after
ARDS diagnosis. These subjects are irrelevant for this study and thus were eliminated.
Other ARDS subjects started their records before the onset of ARDS but stopped before
ARDS diagnosis; these subjects, of number equal to 18, are also eliminated. Therefore,
only the 72 subjects having started records before the ARDS onset and last at least75

until ARDS occurrence are considered. After that, a preprocessing step was required
to smooth the signals and remove the noise. Some subjects were removed due to noise
or too short signals. This leads finally to 50 ARDS subjects. The non-ARDS group
is then reduced to have equal number of subjects, leading to 50 non-ARDS subjects
as well. Figure 1 illustrates an example of the four extracted time series for an ARDS80

subjects. Within the database of 100 subjects, ak-fold cross-validation technique is
considered to set training databases and testing databases[28]. In the following, the
termstraining setandtesting setwould denote any training database obtained at any
step of the cross-validation process with its corresponding testing database respectively.

3. Evidence-based surveillance approach85

The method described in this paper is a real-time method thatmonitors the ongoing
health state of patients using their vital signs. Letxs,i(ℓ), i = 1, . . . , 4, denote the four
time series considered in this study for a subjects, recorded at timeℓ, and lett denote
the real-time. Moreover, letxs,i(a : b) = (xs,i(a), ..., xs,i(b)) be a segment of signali
for subjects going from timea to timeb.90

3.1. Description of the approach

The aim of this work is to set a modelΨ from a training set that distinguishes
in real-time between subjects who are going to develop ARDS labeled“ + 1”, and
subjects who will not, labeled“− 1”. The modelΨ takes as input the collected signals
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Figure 1: An example of the extracted time series for an ARDS subject

xs,i(1 : t), going from the beginning of records until the real-timet, and yields as95

output a decision whether the subject in study is going to develop ARDS. Instead of
using the whole signals, the proposed approach considers a fixed window of length
τ taken at the end of the signals, leading to four segmentsxs,i(t − τ + 1 : t) to be
analyzed at each timet. The reason of analyzing the data of a window of lengthτ
is to have fixed length signals in computations. Moreover, anabnormality is better100

and faster detected within a short segment, compared to the high length signal. The
value of τ could be taken equal to 6, 12 or 24 hours. In this paper, it is obtained
by an optimization over the training sets, as shown in the following. Then, a vector
of parameters is extracted from these segments at real-timet. The beginning of the
signals is yet needed to normalize these parameters. This vector of parameters is then105

used with the belief functions theory to assign evidence to each health state according
to each parameter. The parameters are considered as sourcesof information, providing
an evidence regarding each state of the patient at the given time. Thus, masses are
assigned to each state“ + 1” and“− 1” according to each parameter. The masses are
obtained by means of mass functions defined using the parameters extracted from the110

training set at an earlier offline phase. The masses are then combined to assign a final
mass to each state. A higher mass assigned to the state“ + 1” at timet means that the
subject is predicted to develop ARDS in the future, whereas ahigher mass to“ − 1”
means that the ARDS is not yet predicted at the current time. Therefore, for a new test
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subject given it signals in real-time, a decision will be made on its future health state at115

the earliest possible time.

3.2. Parameters Extraction

The first step of the prediction model is the extraction of parameters. Having a
segmentxs,i(t− τ + 1 : t) from each signal at the real-timet, several linear and non-
linear parameters are extracted as follows. In the following, t− would denote the lower120

bound of the considered time interval, that is,t− = t − τ + 1. For linear parameters,
we consider:

• The mean defined as

µs,i(t)=
1

τ

ℓ=t
∑

ℓ=t−

xs,i(ℓ);

• The standard deviation

σs,i(t)=

√

√

√

√

1

τ

ℓ=t
∑

ℓ=t−

(xs,i(ℓ)− µs,i(t))2;

The variance is equal to the total power of spectral analysis. Thus, it reflects all
the cyclic components responsible for the variability in the data [29].

• The skewness known as the third moment. It measures the symmetry of the data
and it is computed using

Sks,i(t) =

ℓ=t
∑

ℓ=t−
(xs,i(ℓ)− µs,i(t))

3

τ × σ3
s,i(t)

;

It has been proposed that asymmetric tails to the left shown by positive skewness125

or to the right with negative skewness reflect, respectively, the acceleration or
deceleration capacity of the time series data, e.g. for heart rate signal, it is an
approximate distinction of vagal and sympathetic effects on the cardiac modula-
tions [30].

• The kurtosis that describes the shape of the probability distribution and is calcu-
lated using the fourth moment of the data,

Kts,i(t) =

ℓ=t
∑

ℓ=t−
(xs,i(ℓ)− µs,i(t))

4

τ × σ4
s,i(t)

.

The kurtosis measures the concentration of the data around the mean and reflects130

the rigidity of the signal [31].

On the other hand, non linear parameters are also considered, such as:
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• The sample entropy (SampEn), that illustrates the amount of complexity in
data. It is easily applied to any type of time series, including physiological data
such as heart rate variability and blood pressure variability [32, 33]. It is com-
puted using the negative natural logarithm of the conditional probability that a
segment of lengthN having repeated itself foru samples within a tolerancer
will also repeat itself foru + 1 samples [34]. Hence, for the segmentxs,i of
lengthN = τ , SampEn is computed as follows,

SampEns,i(u, r, τ, t) = − ln

(

hs,i(u+ 1, r)

hs,i(u, r)

)

,

whereu is the length of sequences to be compared, r the tolerance foraccepting
andh(u, r) is the number of pairs of patterns sequences ofxs,i of lengthu whose
distance is less thanr.135

• The detrended fluctuation analysis (DFA), that measures thescaling behavior of
a segment [35]. It is defined by the short and long range scaling exponentsDFA1

andDFA2. To perform detrended fluctuation analysis for a segmentxs,i(t− τ +
1 : t), the integrated seriesy(u), u = 1, . . . , τ , is first computed

y(u) =

ℓ=u
∑

ℓ=1

[xs,i(ℓ+ t− τ)− µs,i(t)].

Then,y(u) is divided into time segments of sizen, and a local trendyn(u) is
obtained by a least-squares line fit and subtracted fromy(u). The fluctuation
f(n) for segments of lengthn is calculated as follows:

f(n) =

√

√

√

√

1

τ

u=τ
∑

u=1

(y(u)− yn(u))2.

The fluctuationf(n) is computed for different segment sizesn, then a graph of
log f(n) againstlogn is constructed. Finally, the scaling exponentsDFA1 and
DFA2 define, as their names denote, the slope of the relation between log f(n)
andlogn for ranges of low and high values ofn.

DFA has been used to assess the self-similar correlations ofthe time series [36].140

It has also been described as a measure of “roughness” in the signals, with higher
scaling exponents representing a smoother time series [37].

Having the four measured signals, these computations lead to seven parameters
per signal and thus twenty-eight parameters, for each subject s at each timet. Let
ps,j(t), j = 1, ..., 28, denote these parameters. For many health conditions, the trends145

in vital signs differ among patients. Thus, normal is a relative state for each patient,
that differs with age, weight, medical history, etc. Hence,instead of using the raw
values of the parameters, a normalization phase is performed according to each patient.
Therefore, a first segment of lengthτ is considered from each signal,xs,i(1 : τ).
It corresponds to the initial state of the patient that is assumed to be its stable one.150
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Then, the different parameters are computed for the initialsegments. Letp(0)s,j denote
their initial values. Then, for each real-time measurement, the obtained parameters are
normalized, by computing their ratio to the parameters of the first segmentps,j(t)/p

(0)
s,j .

In the following,ps,j would denote the normalized parameter, for simplicity.
Note that, a parameter selection would be performed in the offline phase using the155

training set to keep only informative one. More details are given in Section 3.4. In the
following, letJ be the set of indices of the selected parameters, and thusps,j(t), j ∈ J ,
are the normalized parameters extracted at real-timet from a subjects signals.

3.3. ARDS prediction with Belief functions
The theory of belief functions, also called Dempster-Shafer theory, is introduced

for the analysis of imperfect information[38, 39]. This theory makes it possible to
illustrate the uncertainty and imprecision of information. It also takes into account
ambiguities and conflicts between sources. The belief functions theory operates on a
frame of discernmentΩ which consists of a finite set containing mutually exclusive
propositions. In this study, there are two groups of subjects, ARDS labeled“+1” and
non-ARDS labeled“−1”. ThenΩ = {+1,−1}. Let 2Ω be the set of all possible
subsets ofΩ, it is then defined by:

2Ω = {∅, {+1}, {−1}, {+1,−1}}.

While ∅ denotes that the state of the subject is neither ARDS, nor non-ARDS, which160

means impossibility,{+1,−1} denotes ignorance and thus ambiguity.

3.3.1. Basic concept
The main concept relies on the modeling of the evidence provided by the extracted

parameters. Information given by a source, that is a parameter, can be represented by
a basic belief assignment(BBA), also named mass function [40]. Letmj(·) be the165

mass function associated to the parameterpj . Then,mj(ω, s, t) reflects the strength of
evidence supporting a subsetω ∈ 2Ω according to the value of the parameterpj at time
t. In other words,mj(ω, s, t) represents the part of evidence saying that the state of the
subjects falls in ω at timet. The mass function should have the following properties
∀s, t:170















mj(∅, s, t) = 0,

mj(ω, s, t) → [0, 1], for ω ∈ 2Ω,
∑

ω∈2Ω
mj(ω, s, t) = 1.

(1)

In order to construct the mass functions related to each parameter, the training sets
are considered. For ARDS subjects of a given training set, the last segments of their
signals are used to compute their parametersps,j = ps,j(Ts), Ts being the length of the
signals of an ARDS subjects. The reason of this choice is that the end of the signals
precedes directly the occurrence of ARDS and thus contains mostly its instability. For175

non-ARDS subjects, the more the segments approaches the beginning of the signals,
the more we are sure of the stability of the subject, since it is possible that a subject
labeled non-ARDS develops the ARDS after recordings. Then,the parameters of non-
ARDS are computed using segments selected from the wholly beginning of the signals,
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following the first segments. LetS+1 andS−1 be the sets of indices of ARDS and non-180

ARDS subjects of the training set respectively. Then, normalized parameters databases
ps,j , s ∈ S+1, andps′,j , s′ ∈ S−1, are obtained. Afterwards, for a parameter type
j, the pdfs are estimated using (1) only ARDS parameters values ps,j , s ∈ S+1, (2)
only non-ARDS valuesps′,j , s′ ∈ S−1 and (3) parameters of both classesps,j, s ∈
S+1 ∪ S−1. Let Qj,{+1}(·), Qj,{−1}(·) andQj,{+1,−1}(·) denote the estimated pdfs.185

These distributions could be obtained by fitting the histograms of the parameters to all
the classical distributions. Then, in the online phase, having a computed parameter
ps,j(t) at the real-timet, the mass assigned to each subset of2Ω is given by

mj(ω, s, t) =
Qj,ω(ps,j(t))

∑

ω′∈2Ω,ω′ 6=∅

Qj,ω′(ps,j(t))
, ω ∈ 2Ω, ω 6= ∅, (2)

whereasmj(∅, s, t) = 0. Figure 2 illustrates an example of such a computation. The
plot shows the distributions of the normalized standard deviation of respiratory rate190

signals parameter for ARDS subjects of a training database in straight thick line, the
one for non-ARDS subjects in dashed line and the one of all subjects in straight thin
line. Moreover, the plot shows the mass assignment for two new parameter valuesp(1)2

andp(2)2 . The first parameter value falls in the distribution of ARDS subjects and the
second is in the middle of ARDS and non-ARDS distributions. When assigning the195

masses of each value from Eq. (2), the assigned mass ofp
(1)
2 from Qj,{+1} is higher

than those ofQj,{−1} andQj,{+1,−1}. Thus, the decision obtained from the parameter

p
(1)
2 is the state of{+1}. On the other hand, for parameterp

(2)
2 , the distributions of

{+1} and{−1} are too close, leading to similar masses from both. However,higher
mass is associated in this case to the distribution of{+1,−1}, thus introducing the200

ambiguity of such case. The mass assigned to{+1,−1} is higher than those of{+1}
and{−1} in all the cases where these distributions are too close. This figure illustrates
the effectiveness of the evidence-theory concept by inserting ambiguities when dealing
with close data and thus avoiding erroneous decisions.

3.3.2. Discounting205

Since we are working on parameters extracted from human bodies, the information
cannot be completely reliable. Hence, a discounting operation is needed to take into
consideration the reliability of the information providedby each parameter [39, 41].
This operation transforms each mass function to a less informative one, based on the
degree of reliability of the source. Moreover, in this approach, it is possible to estimate210

its reliability according to each state, leading to a contextual discounting [42, 43]. Let
βj,{+1} = 1 − αj,{+1} andβj,{−1} = 1 − αj,{−1} be the degrees of reliability of a
parameterpj knowing that the true state is“ + 1” and“ − 1” respectively. Then the
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Figure 2: Mass assignment of new computations in the case of the normalized standard deviation of respira-
tory rate signals.

discounted mass functionαmj assigned topj is given by



















αmj({+1}, s, t) = βj,{−1}mj({+1}, s, t),
αmj({−1}, s, t) = βj,{+1}mj({−1}, s, t),
αmj(Ω, s, t) = mj(Ω, s, t) + αj,{−1}mj({+1}, s, t) + αj,{+1}mj({−1}, s, t),
αmj(∅, s, t) = 0.

(3)
The error ratesαj,{+1} andαj,{−1} could be estimated using the distribution func-215

tionsQj,ω. Knowing that a subjects state is equal to“ + 1”, an error is made in
evidence assignment if a higher mass is given to any subset ofΩ other than{+1}. It is
also the same for{−1}. Then,αj,ω, ω = {+1} or {−1}, is computed for all parame-
ter values, whereQj,ω(p) is less than anyQj,ω′(p), for ω′ 6= ω ∈ 2Ω. Therefore, it is
defined as follows:220

αj,ω = ǫj,ω =

∫

Dj,ω

Qj,ω(p)dp, (4)

whereDj,ω = {p|Qj,ω(p) < Qj,ω′(p), ∀ω′ ∈ 2Ω, ω′ 6= ω}.

3.3.3. Combination
Once the discounted masses of the different parameters are computed, they can be

combined using the normalized conjunctive rule of combination from the Dempster-
Shafer theory. By doing this computation, one obtains a moreinformative mass func-225

tion, leading to more efficient estimation. The combinationof these masses is denoted
by⊕ and defined by the following equation:

m⊕(ω, s, t) =

∑

∩ω′(j)=ω

∏

j∈J

(α)mj(ω
′(j), s, t)

1−
∑

∩ω′(j)=∅

∏

j∈J

(α)mj(ω′(j), s, t)
. (5)

9



3.3.4. Decision making
Finally, to make a decision on the health state of a subjects, the mass function

m⊕ defined onΩ is transformed to a probability measure over the singletonswith the230

pignistic transformation defined by:

BetP (ω, s, t) =
∑

ω′∈2Ω,ω⊆ω′

m⊕(ω′, s, t)

| ω′ |
, ∀ω ∈ Ω, (6)

for ω = {+1} or {−1}. In this way, the final mass of{+1,−1} subset is divided
between{+1} and{−1}. The state having the highest pignistic level is selected for
each subject at every timet. Thus, a decision is made over the health state of subjects
whether he will develop ARDS based on its recordings, and an alert is generated for a235

positive decision.
To make a final decision from the real-time analysis about thehealth state of a pa-

tient, it is also possible to wait for successive positive decisions. Here, a threshold must
be defined as being the number of successive ARDS decisions needed to decide if the
patient is going to develop ARDS. This is done by applying thealgorithm iteratively240

on the total length of the signalss of the training set, then different numbers of succes-
sive positive decisions are considered and the performanceindexes are computed for
each number, that are the sensitivity (Se) and specificity (Sp) indexes, also called true
positive rate and true negative rate, respectively. The threshold of successive ARDS de-
cisions is obtained thereafter by maximizing the Youden index,Youden=Se+Sp−100,245

over all the considered numbers.
Waiting for successive positive estimations overcomes detection of islolated abnor-

malities and leads to a higher specificity of the algorithm.

3.4. Selection of parameters

Instead of considering all the extracted parameters in the model, it is relevant to250

select the most informative ones with less error rates. Thispart of the algorithm
consists of ranking the parameters according to their errorrates and then perform-
ing a sequential forward selection (SFS) of parameters [44]. Hence, an error rate
ǫj is computed for each parameterpj , which is the average of conditional errors,
ǫj = (ǫj,{+1} + ǫj,{−1})/2. The conditional errorsǫj,ω are computed using (4). A255

global ranking of parameters is performed. Parameters fromall signals are ordered
from the lowest error obtained to the highest one.

Once the parameters are ranked, a sequential forward selection procedure is per-
formed. One parameter is added at a time and performance indexes of the model are
computed. For each added parameter, the belief model is applied in real-time for all260

the subjects of the training set and a decision is generated for each of them. The sensi-
tivity and specificity indexes are computed. Thereafter, A curve is plotted and updated
at each iteration illustrating the sum of the performance indexes obtained versus the
number of parameters. Whenever a new value added to the curveshows a decrease
in the performance higher than a valueε, the SFS procedure ends and the parameters265

obtained are maintained.
In addition, in order to take into consideration the dependence of the parameters,

the correlation between the added parameter and the existing parameters is tested and
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Table 1: The most significant parameters for each signal, parameters having a p-value< 0.02 are shown.
Mean± standard deviation are shown for each parameter.

Signal Parameters ARDS group non ARDS group

HR

mean 1.0297± 0.1439 1.0218± 0.0935
Sk −1.875± 6 −3.3629± 31.2769
Kt 1.0628± 0.4082 1.2803± 0.6892

SampEn 1.2277± 0.6079 1.0231± 0.1371

RR
σ 1.6226± 1.4729 0.9209± 0.2851
Sk −0.8592± 10.6885 1.0231± 3.3186
Kt 1.0172± 0.5052 1.3381± 1.2061

SampEn 1.4088± 0.5191 1.0281± 0.2

SpO2

Sk 0.6881± 4.0655 3.1707± 14.2335
Kt 1.0871± 0.5252 1.0907± 0.8359

SampEn 1.2836± 0.6092 1.5598± 0.982
DFA1 0.8678± 0.1777 1.0172± 0.2767
DFA2 1.0289± 0.1349 1.0194± 0.0667

MABP
µ 1.0262± 0.1246 0.9868± 0.072
Sk 0.6396± 1.6238 0.5796± 8.2055

DFA1 0.9432± 0.1459 1.0743± 0.3192
DFA2 0.9985± 0.0178 1.0022± 0.0397

compared to the selection procedure alone. If any correlation coefficient between the
parameters presents a pvalue≤ 0.05 then the parameter is considered correlated with270

an existing one, thus it is eliminated from the selection procedure.

4. Results

As mentioned above, two types of parameters were extracted from each time series.
Linear parameters are the meanµ, the standard deviationσ, the skewnessSk and the
kurtosisKt. Non linear parameters are the sample entropySampEn, and both factors275

from the detrended fluctuation analysisDFA1 andDFA2. For sample entropy, the
value ofu is taken equal to 5, andr equals 0.2, as mentioned in [45]. For the detrended
fluctuation analysis,DFA1 is calculated between the rangen = 4 andn = 16 and
DFA2 is calculated betweenn = 16 andn = 64, as shown in [35]. The results are
obtained by a 5 fold cross validation repeated 10 times. For the illustration of the280

approach, presented in Sections 4.1, 4.2 and 4.4, only one training and one test sets are
considered, then all the sets are considered for the performance evaluation in Section
4.5.

4.1. Statistical analysis

First, a statistical analysis is performed to identify parameters that show a signif-285

icant difference between ARDS and non-ARDS groups. For eachparameter, values
were compared between both groups using the two-sample F-test. A p-value< 0.02
was considered as significant. Results are presented in Table 1. Different linear and
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Figure 3: Ranking of parameters according to error rates. Only parameters having an error lower than 0.4
are included in the figure.

non-linear parameters for each signal has shown significantdifference between groups.
It can be noted from the table that distributions of non ARDS group are more asym-290

metric than ARDS group for all the signals from the values of skewness. In addition to
being asymmetric, kurtosis shows that distributions of nonARDS group for HR, RR
and SpO2 have heavy tails. Moreover, RR’s distribution is widely spread in ARDS
group according toσ. For ARDS group, sample entropy is higher in HR and RR sig-
nals; while it is lower in SpO2. Detrended fluctuation analysis factors are generally295

higher in non ARDS group for SpO2 and MABP signal.

4.2. Parameters Selection

Since there is a high number of parameters, a ranking of theseparameters based on
the error rates is performed. The ranking is illustrated in Figure 3. Parameters having
error rates higher than 0.4 are not presented. The results obtained from the error rate300

ranking in the figure are confirmed from the statistical analysis shown in Table 1. As
shown, most of the parameters that have low errors in Figure 3also showed a significant
difference in the table. This figure shows that the standard deviation extracted from RR
signals presented the lowest error rate among all parameters extracted from the four
signals, thus ranking at the top.305

From these ranked parameters, a sequential feature selection is considered to reduce
the input vector of the belief computations. Figure 4 illustrates the selection procedure
on the training set for both cases with and without correlations. The plot shows the
accuracy as a function of the indicators of the ranked parameters. The accuracy is
defined by the proportion of correctly identified subjects among the total number of310

subjects. A marker is placed on the curves when a parameter isselected. Starting
with σ from RR, the parameters presented in Figure 3 are added sequentially until
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Figure 4: The parameters selection procedure using the simple procedure and the correlation extension
procedure.

the accuracy decreases more thanǫ > 5%. For the correlation study, if a parameter
shows a correlation with any existing parameter with a pvalue lower than 0.05 it is
excluded from the selection. The simple selection procedure finished on the insertion315

of the seventh parameter that isSk from RR. Thus, six parameters are selected in the
simple SFS procedure which areSk andSampEn from HR, σ andSampEn from
RR,Sk from both SpO2 and MABP. However, there is no decrease in the accuracy of
the model in the correlation study but the accuracy is lower than that obtained from the
simple selection.320

4.3. Selection of the alert generation threshold

In order to make a decision on the health state of a new test subject, a threshold
must be defined from the training set. Therefore, we sweep thevalue of successive de-
cisions on the interval[1, ..., 30] hours and the performancesSe andSp are computed.
The threshold that maximizes the Youden index is then considered. Figure 5 illustrates325

the ROC curve of the proposed algorithm by taking the fusion of the first six parame-
ters obtained in the previous section. The plot shows that the optimal cut-off value is
obtained for threshold= 20 hours withSe = 81.4% andSp = 83.78%.

4.4. Selection of window size

As described in the real-time model we have used a fixed-length window for ex-330

tracting the parameters vector for all subjects. Thus, the selection of the size of the win-
dow is important in this study. A short window may not containenough information
and a long window may eliminate an abnormal change in the signal. Different window
sizes are evaluated in this study, values are considered in the range[4, 6, . . . , 24] hours.
Figure 6 illustrates the accuracy for each window size (in hours) as well as the number335

of selected parameters and the threshold shown as a couple (number of parameters,
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Figure 5: ROC curve for the selection of the threshold for alert generating.

threshold). As shown in the figure, window size= 24 hours presents the highest accu-
racy of 82.5% on the considered training set. These values are then considered for the
following.

4.5. Performance Evaluation340

After the illustration of the extraction and selection of the parameters, the model
is tested on the test sets. In this section, results are obtained by a 5-fold cross vali-
dation repeated 10 times. Table 2 presents the performance of each added phase to
obtain at the end the performance of the complete proposed model. The modeling of
the data by associating and combining masses from all the parameters leads to a sen-345

sitivity of 70.23% and a specificity of 71.74% over the training sets and Se = 70.16%
and Sp = 67.89% over the test sets. However, when the parameter selection phase
was performed, an enhancement in the sensitivity was noted over the training sets (Se
= 78.10%, Sp = 66.91%) and the test sets (Se = 72.59%, Sp = 61.16%). In addi-
tion, discounting the mass functions using the error rates improved the performance to350

81.65% of sensitivity and 74.72% of specificity over the training sets and 77.24% and
71.25% for sensitivity and specificity respectively over the test sets. However, when
the correlation was considered in the selection phase the performances decreased with
Se = 80.18% andSp = 69.29% over the training sets and 74.10%, 61.12% over the
test sets.355

4.6. Comparison to the state-of-the-art methods

The proposed model is compared to some classification techniques such as Bayesian
hypothesis test, k-nearest neighbors (kNN) and SVM. The Bayesian hypothesis test is
based on Bayes theorem. It is a probability model that consists of factorizing a joint
probability distribution into a set of conditional distributions for each variable. The k-360

nearest neighbors is one of the basic algorithms in machine learning. It classifies a new
observation to a class by choosing the majority class among the k nearest neighbors in
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Table 2: Performance of the proposed model and the influence of each phase.

Method
training set test set

Se(%) Sp(%) Se(%) Sp(%)
BF without discounting, nor selection 70.23 71.74 70.16 67.89

BF without discounting 78.10 66.91 72.59 61.16
complete BF model 81.65 74.72 77.24 71.25

complete BF model+corr 80.18 69.29 74.10 61.12

the training set. A ten-fold cross validation was performedto obtain k that minimizes
the test loss. The optimal k was found to be 8. As for SVM, it hasproven to be a good
model to classify data. It can be used to differentiate the data using a decision bound-365

ary that produces the optimal separation of classes. Table 3shows the performance
indexes of the proposed model compared to these described techniques. As shown, the
proposed model outperforms the kNN, the SVM as well as the bayesian tests, that are
a simplest form of the evidence theory where the ambiguitiesbetween the sets are not
considered. These results show the importance of the proposed model.370

Table 3: Comparison to state-of-the-art classification methods

Method Sensitivity (%) Specificity (%)
KNN 59.20 79.75

Bayesian test 67.74 65
SVM 58.67 74.06

The proposed Model 77.24 71.25
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5. Discussion

This study proposed a real-time model, based on the belief functions theory, for
predicting ARDS prior to its onset. ARDS results from inflammatory alveolar injury
occurring progressively [46]. The process begins with the destruction of the barriers
of the alveolar membranes resulting by increasing the alveolar permeability. Then,375

injuries progress causing decreased pulmonary compliancewhich leads to pulmonary
hypertension and refractory hypoxia [47, 48]. Moreover, ARDS has been linked to
clinical features such as severe dyspnea, tachypnea and hypoxemia according to [49].
Other studies on the clinical profile of ARDS had shown that itis associated with
breathlessness, hypotension, tachypnea [50] and tachycardia [51]. Although, there are380

no clear clinical features for ARDS, it is evident that ARDS is linked to cardiorespira-
tory and cardiovascular mechanisms. Therefore, the four vital signs that are considered
are the heart rate, the respiratory rate, the oxygen saturation and the mean airway blood
pressure. However, there is a lack in the literature for the characterization of ARDS
using feature extraction.385

In feature extraction techniques, parameters are extracted from raw data signals and
pertinent ones are selected to enhance the fusion performance. The characterization of
signals using the extraction of parameters has been widely applied in biomedical ap-
plications. For instance, an analysis of heart rate variability during syncope was con-
ducted by extracting parameters such as the mean, the standard deviation of the RR390

interval and non linear parameters such as the sample entropy and the detrended fluc-
tuation analysis [52]. Moreover, linear and non-linear parameters were extracted from
heart rate variability signals for ARDS subjects to analyzetheir response to alveolar
recruitment manoeuver [53]. Only few studies have considered other cardiovascular
signals than heart rate, like blood pressure and oxygen saturation signals [31, 54]. A395

characterization of heart beat and blood pressure for diabetes patients using time do-
main parameters such as the mean, the standard deviation, the skewness and the kur-
tosis was studied in [31]. In addition, detrended fluctuation analysis was extracted
from blood pressure signal to study its dynamics through surgical procedure in rats
[55]. In [33], a characterization of periventricular leukomalacia, a brain injury affect-400

ing infants, is proposed by extracting minimum, maximum, mean, variance, skewness,
kurtosis, energy of wavelet coefficients and sample entropyfrom heart rate, mean ar-
terial blood pressure and oxygen saturation. From what preceded, we can conclude
that the extraction of parameters from different physiological signals might help in the
characterization of physiological aspects related to several pathologies, such as ARDS.405

Hence, in this paper, linear and non-linear parameters wereextracted from the time
series as mean, standard deviation, skewness, kurtosis, sample entropy and detrended
fluctuation analysis. Linear parameters provide information regarding the distributions
of the data. Distributions were shown to be asymmetric, having wide tails and being
widely spread. This verifies that biomedical data are not gaussian [56]. Conversely,410

it was found that heart rate and respiratory rate had higher sample entropy in ARDS
group, thus increased complexity [57]. However, oxygen saturation presented lower
complexity in ARDS subjects. In other terms, SpO2 presents more similarity in the
data. FromDFA1 andDFA2 values, we can notice that SpO2 and MABP had lower
correlations in ARDS subjects [36].415
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Moreover, feature fusion is performed using the belief functions framework. The
proposed belief functions framework defines ARDS and non-ARDS groups based on
the probability distributions of the data according to eachparameter. In addition, these
models consider supper subsets instead of considering onlysingletons subsets, thus
they introduce the notion of ambiguity between choosing an ARDS or non-ARDS420

states. The belief theory also takes into account the reliability of each source of in-
formation presented by the discounting operation. The reliability of the sources is a
very important characteristic, especially when working with parameters extracted from
physiological signals. On top of these comes the importanceof belief functions frame-
work, that is the modeling of the data even with missing recordings. It often happens425

that some signals are missing in some part of the recordings because of disconnected
electrodes or a sudden movement of the patient. Unlike classical data mining tech-
niques, the belief functions guarantee that missing parameters due to missing signals
will not affect the overall performance of features fusion.

From the results, the reduction of the number of parameters,by performing a se-430

lection procedure, improved the sensitivity of the model and reduced the complexity of
the computations as well. This way only parameters having low error rates are included
in the model and the combination that presents the best localaccuracy is considered.
Thus, the modeling of the data is done using the minimum amount of parameters in-
stead of using all the extracted parameters. Then, the inclusion of the conditional reli-435

ability of each source has led to an enhancement in the accuracy of the model over the
training and the test sets. Each parameter gives information regarding the patient and
the reliability of the parameter itself in distinguishing between states. Finally, 77% of
ARDS patients are correctly identified in real-time before the occurrence of ARDS and
only 29% of non-ARDS patients are misclassified and considered as possible devel-440

opers of ARDS. The obtained results demonstrate, beside thealready existing studies
on ARDS, that ARDS is linked to cardiorespiratory and cardiovascular mechanisms.
More importantly, ARDS can be predicted using non-invasivephysiological signals in-
stead of using clinical exams or variables that necessitatethe presence of subjects in
hospitals for long period [15, 16, 14].445

It is shown from the results that this model outperformed theclassical classifiers
tested similarly on the data. It is worth noting that the bayesian tests perform only on
singletons and the state membership is determined by computing the likelihood ratio.
However, the added ambiguity set in the proposed evidence-based model may affect the
final decision since it is considered in both discounting andcombination phases. Thus,450

the advantage of such models over the classical classifiers,especially the bayesian tests,
is the inclusion of higher order sets that illustrate the ambiguity intervals.

Previous studies were conducted on the prediction of ARDS orthe mortality related
to ARDS using computed tomographic images [16] or clinical variables [15, 14], that
necessitate clinical exams or the presence of subjects in the hospitals for long periods.455

However, the approach proposed in this paper uses only vitalsigns that can be collected
using non-invasive techniques, thus without disturbing the subjects. Moreover, these
studies present general statistical models to detect ARDS assuming that all subjects will
present similar changes; while this approach is a subject-based one that considers an
initial stable state for each subject and computes the ongoing parameters with respect460

to the stable state. In addition, an information fusion was handled using the evidence
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theory to consider the ambiguity and unreliability of the sources. Finally, this approach
achieved good performances for both sensitivity and specificity indexes for the real-
time surveillance of ARDS.

6. Conclusion465

This paper proposes an evidence-based model for the prediction of ARDS in in-
tensive care unit patients. This work presents several contributions. Non invasive vital
signs are included in the study for many reasons, the facility of their acquisition, the
possible integration in home surveillance systems and the link between these signals
and the risk factors associated with ARDS. Linear and non-linear parameters were470

computed and considered the source of information, since they can give information
about the properties of a signal more than the signal itself.Imprecision and unrelia-
bility of information sources were considered by the belieffunctions model. It assigns
masses to each subset computed from a predefined training set. Then, these masses
were discounted and combined according to the reliability of each source of informa-475

tion. This model is then extended to reduce the dimension of the input by performing
a parameter selection procedure. This model has achieved high performances in both
ARDS and non-ARDS groups. In addition, it outperforms stateof the art techniques.
Further work must be done to extract more parameters that provide evidence on dif-
ferent characteristics in the signals. Moreover, it would be interesting to establish the480

relationships between the changes in time series and the cardiovascular mechanism. A
further study on the parameters selection will also be done,to take into consideration
the dependance of parameters from the beginning of the selection process.
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[48] N. Patroniti, S. Isgrò, A. Zanella, Clinical management of severely hypoxemic patients,
Current opinion in critical care 17 (1) (2011) 50–56.

[49] O. Gajic, O. Dabbagh, P. K. Park, A. Adesanya, S. Y. Chang, P. Hou, I. Harry Ander-
son, J. J. Hoth, M. E. Mikkelsen, N. T. Gentile, M. N. Gong, D. Talmor, E. Bajwa, T. R.645

Watkins, E. Festic, M. Yilmaz, R. Iscimen, D. A. Kaufman, A. M. Esper, R. Sadikot,
I. Douglas, J. Sevransky, , M. M. on behalf of the U.S. Critical Illness, I. T. G. L. I. P. S. I.
(USCIITGLIPS), Early identification of patients at risk of acute lung injury: evaluation of
lung injury prediction score in a multicenter cohort study,American Journal of Respiratory
and Critical Care Medicine 183 (4) (2011) 462–470.650

[50] D. Chaudhury, J. Hasan, S. Paul, I. Ali, A study on clinical profile and outcome of patients
with acute respiratory distress syndrome in a tertiary carehospital in north east india, Sepsis
13 (2017) 29–5.

[51] P. K. Park, J. W. Cannon, W. Ye, L. H. Blackbourne, J. B. Holcomb, W. Beninati, L. M.
Napolitano, Incidence, risk factors, and mortality associated with acute respiratory distress655

syndrome in combat casualty care, Journal of Trauma and Acute Care Surgery 81 (5) (2016)
S150–S156.

[52] N. Khodor, D. Matelot, G. Carrault, H. Amoud, M. Khalil,N. Ville, F. Carre, A. Hernandez,
Kernel based support vector machine for the early detectionof syncope during head-up tilt
test, Physiological measurement 35 (10) (2014) 2119.660

[53] A. Borghi-Silva, G. R. das Chagas, V. M. Borges, M. S. Reis, E. M. de Carvalho, Analysis
of heart rate variability and cardiovascular response in the alveolar recruitment manoeuver
in acute respiratory distress syndrome, Journal of Respiratory and CardioVascular Physical
Therapy 3 (2) (2016) 30–39.

22



[54] Z. Turianikova, K. Javorka, M. Baumert, A. Calkovska, M. Javorka, The effect of ortho-665

static stress on multiscale entropy of heart rate and blood pressure, Physiological measure-
ment 32 (9) (2011) 1425.

[55] C. Galhardo, T. Penna, M. A. de Menezes, P. Soares, Detrended fluctuation analysis of a
systolic blood pressure control loop, New Journal of Physics 11 (10) (2009) 103005.

[56] K. C. Chua, V. Chandran, U. R. Acharya, C. M. Lim, Application of higher order statis-670

tics/spectra in biomedical signalsa review, Medical engineering & physics 32 (7) (2010)
679–689.

[57] J. S. Richman, J. R. Moorman, Physiological time-series analysis using approximate en-
tropy and sample entropy, American Journal of Physiology-Heart and Circulatory Physiol-
ogy 278 (6) (2000) H2039–H2049.675

23




