H. Benedikt, P. Egon, and E. S. , Mathematical relationships between bone density and mechanical properties: A literature review, Clinical Biomechanics, vol.23, pp.135-146, 2008.

. L. Bredbenner-t, . P. Nicoletta-d, and . T. Davy-d, Modeling damage in human vertebral trabecular bone under experimental loading, Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2006.

J. L. Chaboche, Continuum Damage Mechanics: Part I and II, J. Appl. Mech, vol.55, pp.59-79, 1988.

C. Y. Charlebois and M. Pahr-d, A patientspecific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads, Computer Methods in Biomechanics and Biomedical Engineering, pp.477-487, 2008.

. L. Clouthier-a, H. S. Hosseini, and G. Maquer, Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation, Med. Eng. Phys, vol.37, pp.599-604, 2015.

H. Giambini, X. Qin, and D. D. Daescu, Specimen-Specific Vertebral Fracture Modeling: A Feasibility Study using the Extended Finite Element Method, Med. Biol. Eng. Comput, vol.54, issue.4, pp.589-593, 2016.

. J. Gibson-l, The Mechanical behavior of calcellous bone, J. Biomech, vol.18, issue.5, pp.317-328, 1985.

. W. Goulet-r, . A. Goldstein-s, and M. J. Ciarelli, The relationship between the structural and orthogonal compressive properties of trabecular bone, J. Biomech, vol.27, pp.375-389, 1994.

. Hambli-r, . Bettamer-a, and . Allaoui-s, Finite element prediction of proximal femur fracture pattern based on orthotropic behavior law coupled to quasi-brittle damage, Medical Engineering and Physics, issue.34, pp.202-210, 2012.

C. R. Jacobs, Numerical Simulation of Bone Adaptation to Mechanical Loading, 1994.

. S. Kaneko-t, J. S. Bell, and M. R. Pejcic, Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases, J. Biomech, vol.37, pp.523-530, 2004.

P. Lips and . Van-schoor, Quality of life in patients with osteoporosis, Osteoporosis Int. J, vol.16, issue.5, pp.447-455, 2005.

. Manai-m.s, Modélisation de l´endommagement d´une structure osseuse, PFE Instrumentation et Maintenance Industrielle, 2015.

J. J. Marigo, Formulation of a damage law for an elastic material, Comptes Rendus, Serie II -Mécanique, pp.1390-1312, 1981.

H. Marquer, J. Schwiedrzik, and . K. Zysset-ph, Embedding of human vertebral bodies leads to higher ultimate load and altered damage localisation under axial compression, Comput. Meth. Biomech. Biomed. Engin, issue.12, pp.1311-1322, 2014.

M. D. Johnello and H. Wedel, Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures, BMJ, issue.7041, pp.1254-1259, 1996.

M. Mirzaei, . Zeinali-a, and . Razmjoo-a, On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT-based finite element method, J. Biomech, vol.42, pp.1584-1591, 2009.

M. E. Bayraktar, H. H. Keaveny, and T. M. , Trabecular bone modulus-density relationships depend on anatomic site, J. Biomech, vol.36, issue.78, pp.897-904, 2003.

. A. Peck-w, P. Burckhardt, and C. Christiansen, Consensus development conference. Diagnosis, prophylaxis, and treatment of osteoporosis, Am. J. Med, issue.6, pp.646-650, 1993.

. Pijaudier-cabot-g and Z. P. Bazant, Nonlocal damage theory, Journal of Engineering Mechanics, vol.113, issue.10, pp.733-9399, 1987.

. Saanouni-k and M. Hamed, Micromorphic approach of finite gradient -elastoplasticity fully coupled with ductile damage. Formulation and computational aspects, International Journal of Solids and Structures, vol.50, pp.2289-2309, 2013.

. Saanouni-k, C. H. Forster, and . Ben-hatira-f, On the anelastic flow damage, Int. J. Damage Mech, pp.140-169, 1996.

. Sapin-e, Personnalisation des propriétés mécaniques de l'os vertébral à l'aide d'imagerie à basse dose d'irradiation: prédiction du risque de fracture, Arts et Métiers ParisTech, 2008.

. Schileoa-e, F. Taddeia, and . Cristofolinia-l, Subject--specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro, J. Biomech, vol.41, pp.356-367, 2008.

U. D. Van-rietbergen-b, . Laib-a, and P. Ruegsegger, The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone, Bone, vol.25, issue.1, pp.55-60, 1999.