Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite

Abstract : Three methods to further enhance thermal performance of the metal foam/phase change material (PCM) composite are investigated and compared. These three methods include changing the pores per inch (PPI) of metal foam, modifying the shape of the cold wall and using the discrete heat sources. In this study, the composite consists of two materials: aluminum foam with 90% porosity as metal foam and paraffin wax as PCM. The numerical model based on finite volume method is developed, and the non-equilibrium equation is applied to study the melting process of the paraffin embedded in aluminum foam. The heat loss, the liquid average velocity and the efficiency of latent heat storage are analyzed and discussed. The results show that adopting the aluminum foam with high PPI value or modifying the shape of the cold wall could improve the thermal response of composite. Besides, the discrete heat sources could lead to a large average velocity in the liquid region. Combining the advantages of these methods, an optimization method is also proposed, which could improve the efficiency to 83.32% comparing with the pure paraffin.
Complete list of metadatas

https://hal-utt.archives-ouvertes.fr/hal-02279698
Contributor : Jean-Baptiste Vu Van <>
Submitted on : Thursday, September 5, 2019 - 2:52:32 PM
Last modification on : Monday, September 16, 2019 - 4:35:58 PM

Identifiers

Collections

P2MN | UTT

Citation

Feng Zhu, Chuan Zhang, Xiaolu Gong. Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite. Applied Thermal Engineering, Elsevier, 2016, 109, pp.373-383. ⟨10.1016/j.applthermaleng.2016.08.088⟩. ⟨hal-02279698⟩

Share

Metrics

Record views

4