Novel Ag decorated biomorphic SnO2 inspired by natural 3D nanostructures as SERS substrates - Archive ouverte HAL Access content directly
Journal Articles Materials Letters Year : 2012

Novel Ag decorated biomorphic SnO2 inspired by natural 3D nanostructures as SERS substrates

(1) , (1) , (1) , (1) , (2)
1
2

Abstract

In this work, we demonstrated a novel surface-enhanced Raman scattering (SERS) substrate inspired by natural nanostructures of butterfly wing scales. By facile and low-cost procedures, we synthesized the substrate composed of tin dioxide (SnO2) and silver (Ag) nanoparticles (NPs). Micrographs and composition analyses exhibited the morphologies of Ag-Biomorphic SnO2 which inherited the natural three-dimension (3D) periodic nanostructures, and characterized the elemental information of the nanocomposites. SERS spectra were measured by using rhodamine 6G (R6G) as analyte molecules. The satisfying sensibility (with the enhancement factor about 106) and good reproducibility of this SERS-active substrate revealed the effectiveness of our work. It is expected that this substrate would be a potential candidate for relative applications.
Not file

Dates and versions

hal-02279663 , version 1 (05-09-2019)

Identifiers

Cite

Boyang Liu, Wang Zhang, Haoming Lv, Di Zhang, Xiao-Lu Gong. Novel Ag decorated biomorphic SnO2 inspired by natural 3D nanostructures as SERS substrates. Materials Letters, 2012, 74, pp.43-45. ⟨10.1016/j.matlet.2011.12.086⟩. ⟨hal-02279663⟩

Collections

CNRS UTT
7 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More