https://hal-utt.archives-ouvertes.fr/hal-02276179Panicaud, BenoîtBenoîtPanicaudLASMIS - Laboratoire des Systèmes Mécaniques et d'Ingénierie Simultanée - ICD - Institut Charles Delaunay - UTT - Université de Technologie de Troyes - CNRS - Centre National de la Recherche ScientifiqueApplication of Clifford algebra $${C \ell_3(\mathbb{C})}$$ to continuum and engineering mechanicsHAL CCSD2012Clifford AlgebraGeometric AlgebraElementary TransformationSurface Mechanical Attrition TreatmentHyperbolic Number[SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]VU VAN, Jean-Baptiste2019-09-02 13:08:082022-06-26 04:47:372019-09-02 13:08:08enJournal articles10.1007/s00707-012-0727-81Multivectorial algebra is of both academic and technological interest. Its application, however, is not always easy. A distinction must be made between polar and axial vectors and between scalars and pseudo-scalars. Eight element types are often considered even if they are not always identified as multivectors. In some cases, for simplicity’s sake, only vectorial algebra or quaternion algebra is explicitly used for physical and mechanical applications. It would, however, be more convenient to use more complex algebra directly in order to have a wider range of mechanical applications. The aim of this paper is to examine one particular type of Clifford algebra that could solve this problem. The present study focusses on showing how these quantities can be used to model mechanical and engineering problems. First, continuum mechanics in a Cauchy medium is investigated for elastic transformations. Second, a specific type of shot-peening application is studied. Applications are then used to illustrate the scope and efficiency of this type of modeling based on geometric algebra.