
Modeling past-dependent partial repairs for condition-based maintenance of continuously
deteriorating systems

K.T. Huynh∗
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Abstract

We are interested in the stochastic modeling of a condition-based maintained system subject to continuous deterioration

and maintenance actions such as inspection, partial repair and replacement. The partial repair is assumed dependent on

the past in the sense that it cannot bring the system back into a deterioration state better than the one reached at the

last repair. Such a past-dependency can affect (i) the selection of a type of maintenance actions, (ii ) the maintenance

duration, (iii ) the deterioration level after a maintenance, and (iv) the restarting system deterioration behavior. In this

paper, all these effects are jointly considered in an unifying condition-based maintenance model on the basis of restarting

deterioration states randomly sampled from a probability distribution truncated by the deterioration levels just before

a current repair and just after the last repair/replacement. Using results from the semi-regenerative theory, the long-run

maintenance cost rate is analytically derived. Numerous sensitivity studies illustrate the impacts of past-dependent partial

repairs on the economic performance of the considered condition-based maintained system.
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Acronyms

ARA1 arithmetic reduction of age with memory 1

ARD1 arithmetic reduction of deterioration with memory 1

AGAN as-good-as-new

CBM condition-based maintenance

CBMS condition-based maintained system(s)

CR corrective replacement(s)

PR preventive replacement(s)

PPR preventive partial repair(s)

pdf probability density function(s)

TBM time-based maintenance

Notations

Xt system deterioration level at timet

E j , S j end time of thej-th repair/replacement, starting time of the( j + 1)-st repair/replacement

T j,k k-th inspection time over thej-th repair/replacement cycle
[

E j ,E j+1

)

α0, α
(

XE+j

)

constant part andXE+j
-dependent part of shape parameter of the deterioration process{Xt}E+j ≤t≤S j

β constant scale parameter of{Xt}t≥0

Γ (·), Γ (·, ·) complete Gamma function, upper incomplete Gamma function

f·,·, F̄·,· probability density function, survival function ofXt

L system failure threshold
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ζ threshold for triggering a PR or a PPR

η threshold for choosing between a PR and a PPR

δ inspection period

λ0, λ (·, ·) constant duration for a replacement, additional deterioration-dependent duration for PPR

g (· | ·, ·) pdf of the system deterioration level after a past-dependent PPR

Cm, Cr , Cp, Cc, Ci, Cu inspection cost, PPR cost, PR cost, CR cost, inactivity cost rate, unavailability cost rate

C (t), C∞ cumulative maintenance cost up to timet, long-run maintenance cost rate

Nm (t), Nm

([

0+,E+1
])

number of inspections up to timet, and over
[

0+,E+1
]

Nr (t), Nr

([

0+,E+1
])

number of PPR up to timet, and over
[

0+,E+1
]

Np (t), Np

([

0+,E+1
])

number of PR up to timet, and over
[

0+,E+1
]

Nc (t), Nc

([

0+,E+1
])

number of CR up to timet, and over
[

0+,E+1
]

I (t), I
([

0+,E+1
])

cumulative duration of the system inactivity up to timet, and over
[

0+,E+1
]

U (t), U
([

0+,E+1
])

cumulative duration of the system unavailability up to timet, and over
[

0+,E+1
]

{

Yj

}

j∈N
Markov chain describing the system deterioration at repair/replacement times (Yj = XR+j

)

∆E1 length of the first Markov renewal cycle

π stationary measure of
{

Yj

}

j∈N

P (·, ·) transition kernel of
{

Yj

}

j∈N

Eπ [·] expectation with respect to the measureπ

1. Introduction

Maintenance is an effective solution to reduce the system failure, improve the system availability, and extend the

system lifetime. It has been adopted in a wide range of systems, such as civil infrastructure (Frangopol and Liu, 2007),

manufacturing systems (Lee et al., 2011), automotive vehicles (Lu et al., 2014), I.T. software (Benestad et al., 2009),

energy assets (Shafiee and Sørensen, 2017), etc. Maintenance activities comprise perfect and imperfect actions classified

following their effects on the condition of maintained systems (Pham and Wang, 1996). If the maintenance recovers

the system back to an as-good-as new (AGAN) condition, it is perfect; otherwise, it is imperfect. Typical examples

of perfect maintenance are complete replacement and overhaul, and of imperfect maintenance are testing, inspection,

minimal repair and partial repair. Unlike restricted applications of perfect maintenance in engineering practice, imperfect

maintenance characterizes divers realistic actions whose imperfectness may be caused by various factors such as human

errors, spare parts quality, lack of materials, lack of maintenance time, etc. Modeling imperfect maintenance is thus

crucial for practical needs.

The present paper deals with a particular kind of imperfect maintenance calledpast-dependent partial repair. It is

characterized by the phenomenon thata partial repair cannot bring a deteriorating system back into a deterioration state

better than the one reached at the last repair. The deterioration paths of draught fans and of gyroscopes provided in

(Wang et al., 2018) and (Hu et al., 2018; Pei et al., 2018) are some real-world examples for this phenomenon. Our aim

is to develop a condition-based maintenance (CBM) with past-dependent partial repairs for continuously deteriorating

systems considering. The main motivation is that CBM is usually more efficient than run-to-failure maintenance and time-

based maintenance (TBM) (Ahmad and Kamaruddin, 2012), especially when the system deterioration is nowadays easily

accessed thanks to the development of sensor and data transmission technologies (Roy et al., 2016). Notwithstanding,

the literature of past-dependent partial repairs is mostly attached to TBM via models with memory (e.g., arithmetic

reduction of age (ARA) and arithmetic reduction of intensity (Doyen and Gaudoin, 2004)). Therefore, modeling this

kind of imperfect maintenance is still a widely open issue in the contexte of CBM.

In the literature, three main approaches have been employed to take into account the past dependency in imperfect

CBM models applied to continuously deteriorating systems.

1. Repairs number-based modeling. The first approach considers that the system residual damage after each partial

repair exhibits an increasing trend with the sequence of repairs. Since the number of repairs increases over time
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until the next replacement, their ability to improve the system deterioration weakens. This leads to the dependency

between past and current repairs. Through the repairs number, past dependency effects on the maintained system

are modeled. For instance, Liao et al. (2006); Guo et al. (2013); Hu et al. (2018); Pei et al. (2018) have applied this

approach to express the past dependency of both the system deterioration level and deterioration rate. Besides, in

(Liao et al., 2006; Guo et al., 2013), a higher number of performed repairs also lengthen maintenance duration, but

it does not contribute to CBM decision-making. On the contrary, in (Hu et al., 2018; Pei et al., 2018), this number

is used as an index to switch between imperfect and prefect maintenance actions, however maintenance durations

are omitted.

2. Virtual age-based modeling. The second approach links the virtual age of a system to its deterioration level.

When a repair removes a portion of virtual age accumulated since the last repair, it also puts the system back to a

deterioration level where it was some time before. By this way, the repair is past-dependent. Ahmadi (2014, 2015);

Mercier and Castro (2013) are a few authors who employ this approach to developed their CBM models. Using

the Kijima’s type I model (Kijima, 1989), Ahmadi (2014, 2015) has explained how past-dependent partial repairs

affect the system deterioration level and system failure rate.Beyond the impacts on the system deterioration and

failure behavior, Mercier and Castro (2013) have based on the ARA with memory 1 (ARA1) model (Doyen and

Gaudoin, 2004) to decide if imperfect repair or perfect replacement is more suitable for a preventive action.

3. Deterioration level-based modeling. Unlike the two above approaches, the third one impacts directly the system

deterioration. It assumes that a repair just can return the system to a deterioration level worse than the one existing

at the last repair. In this spirit, Ponchet et al. (2011) havemimicked the ARA1 model to build so-called Arithmetic

Reduction of Deterioration with memory 1 (ARD1) model. This model enables a connection to the past in the

sense that each repair reduces a part of the deterioration accumulated by the system from the last repair. The ARD1

model is further implemented by Castro and Mercier (2016) todetermine whether a repair or a replacement should

be carried out at a preventive maintenance time.

For a better choice among the aforementioned approaches, some comparative works have been done. For instance,

Mercier and Castro (2019) have performed stochastic comparisons between the ARA1 and ARD1 models under the

assumption of a Gamma deteriorating system. Based on a system subject to the Wiener deterioration process, Kahle

(2019) has recently compared Kijima’s type models (Kijima,1989) applied for both the system virtual age and the

system deterioration. These models also implies that the higher the repairs number, the more the system is deteriorated.

Consequently, impacts of repairs number are considered indirectly in the second and third approaches. Moreover, it

seems that only the latter is able to take into account directly deterioration information revealed by the system monitoring

in repair models.

Owing to its advantages, we have applied the deterioration level-based approach to develop our CBM model consid-

ering past-dependent partial repairs for a continuously deteriorating system. Compared to previous works using the same

approach (see e.g., (Ponchet et al., 2011; Castro and Mercier, 2016; Zhao et al., 2019)), the developed CBM model has

three major differences. Firstly, to express the past dependency of the system deterioration level, we just use a truncated

probability distribution. After a repair, the restarting deterioration level of the system is sampled from a probability

distribution truncated by the deterioration levels just before a current repair and just after the last repair/replacement.

Unlike arithmetic reduction type and Kijima’s type models,this simple model allows breaking the memory assumption:

the system after a repair is put back to an exact deterioration level where it was in the past, which is not easily verified in

practice due to the stochastic nature of deterioration process. Secondly, we take into account all the possible the effects

of past-dependent partial repairs in an unifying CBM model via restarting deterioration states. There are effects on (i) the

selection of a type of maintenance actions (either a partialrepair or a perfect replacement), (ii ) the maintenance duration,

(iii ) the deterioration level after a repair, and on (iv) the restarting system deterioration behavior. Finally, we analyti-

cally derive the long-run expected maintenance cost rate ofthe condition-based maintained system (CBMS) using the

semi-regenerative theory. Even though this approach has now become rather classical in reliability literature (Bérenguer,

2008), its development in the context of past dependency is still meaningful, especially in terms of numerical computation

3



and Monte Carlo simulation.

The remainder of this paper is organized as follows. Section2 gives a detailed description of the considered CBMS.

Sections 3 and 4 are devoted to the mathematical formulationand validation of the asymptotic behavior and the cost

model of the maintained system. The sensitivity studies in Section 5 allow us to assess the effects of past-dependent

partial repairs on the economic performances of the maintained system. Finally, some conclusions and perspectives are

discussed in Section 6.

2. Description of the condition-based maintained system

Let consider a single-unit system subject to continuous deterioration such as wear, fatigue, corrosion, crack growth

(Grall et al., 2002). Such a system may consist of one component or one group of associated components whose deterio-

ration state at timet ≥ 0 can be summarized by a scalar random variableXt, with X0 = 0. For safety, a high deterioration

is unacceptable in engineering practice so that the system is declared as failed whenever its deterioration level exceeds a

critical thresholdL (i.e., Xt ≥ L), even if it is physically running. To prevent or correct thesystem failure, maintenance

actions such as inspection, perfect replacement and partial repair are resorted to. The inspection and replacement are

assumed memoryless, while the partial repair is past-dependent via the deterioration level given at the last repair. Since

these actions are costly, a deterioration-based maintenance policy with two decision thresholds has been proposed to

organize them in a proper manner. A threshold on deterioration levels revealed by inspections, denotedζ ∈ [0, L), is

used to decide wether or not a preventive intervention should be done at a given inspection time. Another threshold on

deterioration levels returned by last repairs, denotedη ∈ [0, L], is used to select the type of a preventive action (i.e., partial

repair or perfect replacement). Therefore, letE0,E1, . . . ,E j ,E j+1, . . . , be the successive end-of-repair/replacement times,

with E0 = 0, the evolution of the maintained system on the cycle
[

E j ,E j+1

)

, j ∈ N, is as follows.

1. The system is regularly inspected at timesT j,k = E j + k · δ, with k = 1, 2, . . ., until XT j,k ≥ ζ. Let S j denote the

starting time of a maintenance action on
[

E j ,E j+1

)

, j ∈ N, then over
[

E j ,S j

]

, Xt acts like a homogeneous Gamma

process (Van Noortwijk, 2009) with shape parameterα0 + α

(

XE+j

)

and scale parameterβ > 0

{Xt}E+j ≤t≤S j
∼ HGP

(

α0 + α

(

XE+j

)

, β

)

. (1)

The first part of the shape parameterα0 > 0 is a constantcharacterizing the proper dynamics of the system

deterioration. The second partα
(

XE+j

)

, whereα (0) = 0, is acontinuous increasing non-negative functionof XE+j
,

0 ≤ XE+j
< L, representing the effect of past dependency on the future deterioration dynamics. Consequently,

between two timessandt, E j ≤ s< t ≤ S j , the random deterioration incrementXt −Xs is Gamma distributed with

probability density function (pdf)

f(
α0+α

(

XE+j

))

·(t−s),β
(x) =

β

(

α0+α

(

XE+j

))

·(t−s)
x

(

α0+α

(

XE+j

))

·(t−s)−1
e−βx

Γ

((

α0 + α

(

XE+j

))

· (t − s)
) · 1{x≥0}, (2)

and survival function

F̄(

α0+α

(

XE+j

))

·(t−s),β
(x) =

Γ

((

α0 + α

(

XE+j

))

· (t − s) , βx
)

Γ

((

α0 + α

(

XE+j

))

· (t − s)
) , (3)

where 1{·} denotes the indicator function which equals 1 if the argument is true and 0 otherwise,Γ (α) =
∫ ∞

0 zα−1e−zdz

andΓ (α, x) =
∫ ∞

x
zα−1e−zdz are respectively the complete and upper incomplete gamma functions. The inspec-

tion is assumed perfect in the sense that it reveals the exactdeterioration level of the system. Moreover, it takes

negligible time, has no effect on the system deterioration, and incurs a constant unit costCm > 0.

2. At an inspection timeT j,k = E j + k · δ, k = 1, 2, . . ., a CBM decision rule based on bothXT j,k andXE+j
is adopted.
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(a) If XT j,k ≥ L, a corrective replacement (CR) with constant unit costCc is carried out immediately on the

failed system (i.e.,S j = T j,k). It takes a constant durationλ0 due to e.g., the material set-up, the system

dismantling and reassembly. During the CR, the system is inactivated, so that the system deterioration level

keeps unchanged (i.e.,XE−j+1
= XS j , with E j+1 = S j + λ0). The system inactivity incurs a constant cost rate

Ci > 0. Furthermore, before the CR starts, the system has been failed and unavailable untilS j . Such a system

unavailability incurs a constant cost rateCu > Ci because it is unforeseen. After the CR, the system is AGAN

such thatXE+j+1
= 0.

(b) If ζ ≤ XT j,k < L andXE+j
≥ η, a preventive replacement (PR) with constant unit costCp < Cc is immediately

carried out on the unrepairable badly deteriorated system (i.e., S j = T j,k). The PR also takes a constant

durationλ0 due to the same reason as above. Over
[

S j ,E j+1

]

, with E j+1 = S j + λ0, the system is inactivated

at the cost rateCi and it deterioration level is unchanged (i.e.,XE−j+1
= XS j ). After the PR, the system is reset

to be AGAN (i.e.,XE+j+1
= 0).

(c) If ζ ≤ XT j,k < L and XE+j
< η, a preventive partial repair (PPR) with constant unit costCr ∈

(

Cm,Cp

)

is

immediately carried out on the repairable badly deteriorated system (i.e.,S j = T j,k). The PPR requires a

durationI j depending onXE+j
andXS j such that

I j = λ0 + λ

(

XE+j
,XS j

)

, (4)

whereλ0 is a constant duration as for replacements,λ
(

XE+j
,XS j

)

is a continuous increasing function ofXE+j

andXS j , with λ (0, 0) = 0. So, the higher the value ofXE+j
or XS j , the longer the required durationI j for

PPR. As in the case of replacements, the system is inactivated during the PPR at the cost rateCi, and its

deterioration level is still unchanged (i.e.,XE−j+1
= XS j , with E j+1 = S j + I j). Just after the PPR, the system

restarts with a deterioration levelXE+j+1
∈

[

XE+j
,XS j

]

sampled from a pdf truncated byXS j andXE+j

XE+j+1
∼ g

(

y | XS j ,XE+j

)

. (5)

(d) If XT j,k < ζ, no further intervention is needed atT j,k, and hence nothing is changed. The decision is postponed

to the next inspection atT j,k+1 = T j,k + δ.

The next cycle begins atE j+1 with initial deterioration levelXE+j+1
. On which, the system deterioration evolves following

a homogeneous Gamma process with shape parameterα0+α

(

XE+j+1

)

and scale parameterβ > 0. If XE+j+1
≥ XE+j

(it is true

when the last maintenance action is a PPR), the system deteriorates with a higher average speed and a higher variance

than before.Figure 1 illustrates the deterioration evolution of the CBMS over some first repair/replacement cycles.

For the considered system, the failure thresholdL, and the maintenance costsCm, Cr , Cp, Cc, Ci andCu are input data.

The scalarsα0, β andλ0, and the functionsα (·), λ (·) andg (· | ·, ·) are parameters to be determined from deterioration and

maintenance data. Although this problem has not been dealt with in this paper, we still believe that the following two-

steps procedure could be applied. For some conjectured parametric forms ofα (·), λ (·) andg (· | ·, ·), classical methods

(e.g., maximum likelihood method, method of moment, etc.) are used to estimate the model parameters (includingα0,

β andλ0) from deterioration and maintenance data. Next, we performgoodness-of-fit tests to find the best fit of the

data. For this estimation-testing procedure, the deterioration and maintenance data are obviously prerequisite. This is

why building such a data-set is recognized as a key perspective of the paper. Finally, the inspection periodδ, and the

deterioration thresholdsζ andη are decision variables to be jointly optimized. As argued in(Wagner, 1975, chapter 11),

the long-run expected cost rate is a suitable objective function

C∞ (δ, ζ, η) = lim
t→∞

C (t)
t
, (6)

whereC (t) denotes the cumulative maintenance cost incurred in the time interval [0, t].
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Figure 1:Schematic evolution of the maintained system state

To illustrate the practicalness of the proposed CBMS, let usintroduce the gyroscope equipment represented in (Hu

et al., 2018; Pei et al., 2018). Gyroscope is a core componentin inertial navigation systems. Due to the wear of rotor

spin axis and the friction of gimbal bearings, the gyroscopic drift increases over time, and hence degrades the gyroscope

performance. Therefore, the drift can be seen as a deterioration index of the gyroscope. In the experiment provided

by Hu et al. (2018); Pei et al. (2018), the gyroscope is periodically inspected forδ = 2.5h each time. Whenever the

gyroscopic drift revealed by an inspection exceeds a threshold L = 0.37◦/h, the gyroscope is considered as failed and

must be replaced. If the drift value is still less thanL = 0.37◦/h but greater thanζ = 0.30◦/h, the current in the torque

coil of the gyroscope is adjusted to compensate the drift value. Such an adjustment is a partial repair action on the

gyroscope. Compared to the decision rule implemented in theabove CBMS, this one is a particular case withη = L. The

evolution of the drift data of two maintained gyroscopes areplotted in Figure 2. Looking at the sequence of drift levels

Figure 2: Drift data of two maintained gyroscopes adapted from (Hu et al., 2018; Pei et al., 2018)

after adjustments and the deterioration speed of the gyroscope, their characteristics is completely covered in our CBMS.

Although the duration of maintenance actions has not been mentioned in this experiment, various existing works (see

e.g., (Castanier et al., 2003; Liao et al., 2006)) confirm that the repair duration is very influenced by partial repairs.
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3. Asymptotic deterioration behavior of the condition-based maintained system

Evaluating the maintenance cost rate in the long term (6) requires the study of the asymptotic deterioration behavior

of the maintained system.In practice, the system does not wait till infinity to reach its asymptotic behavior, but rather

at a finite moment from which the short-run maintenance cost rate converges to the long-run one with an acceptable

error. Theoretically, the study of asymptotic behavior can be significantly simplified thanks to the semi-regenerative

properties of the deterioration process of the maintained system (Bérenguer, 2008). In this section, after analyzinghow

these semi-regenerative properties simplifies the evaluation of (6), we derive the stationary law of the maintained system

deterioration.

3.1. Semi-regenerative properties of the maintained system deterioration

The semi-regenerative properties of the deterioration process{Xt}t≥0 of the maintained system allow studying the

asymptotic deterioration behavior of the system on a limited horizon instead of an infinite horizon. After the end of a

system repair/replacement atE j , j ∈ N, the future deterioration process
{

Xt+E j

}

t≥0
of the maintained system depends on

its past{Xt}0≤t≤E j
only via XE+j

. Therefore, apart from its regenerative structure,{Xt}t≥0 appears as a semi-regenerative

process (Cinlar, 1975, page 343), with repair/replacement end timesE+j , j ∈ N, as semi-regenerative (Markov renewal)

times (see Figure 1). Embedded in{Xt}t≥0, there exits a Markov chain
{

Yj

}

j∈N
, Yj = XE+j

, with stationary lawπ. As shown

in (Grall et al., 2002), the study of asymptotic behavior of{Xt}t≥0 can be restricted to a single semi-regenerative cycle

(also known as Markov renewal cycle) defined by two successive repair/replacement times, and the long-run maintenance

cost rate (6) can be expressed by

C∞ (δ, ζ, η) = lim
t→∞

C (t)
t
=

Eπ
[

C
([

0+,E+1
])]

Eπ [∆E1]
, (7)

whereEπ [·] denotes thes-expectation with respect to the stationaryπ, and∆E1 = E1 denotes the length of the first

Markov renewal cycle
[

0+,E+1
]

. We note that 0+ is not merely the initial working time of the system at whichX0+ = 0,

but rather the beginning of a Markov renewal cycle at whichX0+ = x, where 0≤ x < L. Some elements of proof of

(7) are provided in (Mercier and Pham, 2014). A short length of ∆E1 simplifies the analysis of the system deterioration

behavior, thence allows an analytical evaluation ofC∞ (δ, ζ, η). However, the price paid to this simplicity is the derivation

of the stationary lawπ of the embedded Markov chain
{

Yj

}

j∈N
, which is the main difficulty of this approach.

3.2. Stationary law of the embedded Markov chain
{

Yj

}

j∈N

The embedded Markov chain
{

Yj

}

j∈N
describes the system deterioration state at the end of a repair/replacement action.

It starts fromY0 = 0, takes the value in the continuous state space [0, L), and comes back to 0 (i.e., a regeneration set)

almost surely due to replacement actions (see Figure 1). Therefore, there exists a stationary measureπ for
{

Yj

}

j∈N
on

[0, L), which is the solution of the invariance equation (Asmussenand Glynn, 2007, page 97)

π (dy) =
∫

[0,L)
P (x, dy) π (dx) , (8)

whereP (x, dy) stands for the transition kernel of
{

Yj

}

j∈N
from XE+j

= x to XE+j+1
= y. In the following, we seek a

closed-form expression ofP (x, dy), and thence propose a solution for (8).

3.2.1. Transition kernel P(x, dy)

A closed-form expression ofP (x, dy) can be obtained by exhaustively analyzing different possible scenarios of the

maintained system under the(δ, ζ, η) policy from the beginningE+j to the endE+j+1 of the j-th Markov renewal cycle. As

shown in Appendix A, we can expressP (x, dy) as follows.
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1. whenζ < η,

P (x, dy) =
(

δ0 (dy) · (ρ1 (x) + ρ2 (x)) + (p1 (y | x) + p2 (y | x)) · 1{y,0,x≤y<L} · dy
)

· 1{0≤x<ζ}

+
(

δ0 (dy) · ρ1 (x) + p3 (y | x) · 1{y,0,x≤y<L} · dy
)

· 1{ζ≤x<η} + δ0 (dy) · 1{η≤x<L}, (9)

2. whenη ≤ ζ,

P (x, dy) =
(

δ0 (dy) · (ρ1 (x) + ρ2 (x)) + (p1 (y | x) + p2 (y | x)) · 1{y,0,x≤y<L} · dy
)

· 1{0≤x<η}

+ (ρ3 (x) + ρ4 (x)) · δ0 (dy) · 1{η≤x<ζ} + δ0 (dy) · 1{ζ≤x<L}, (10)

where, givenXE+j
= x,

• ρ1 (x) denotes the conditional probability of a CR after one inspection period sinceE+j

ρ1 (x) = F̄(α0+α(x))δ,β (L − x) , (11)

• ρ2 (x) denotes the conditional probability of a CR after multiple inspection periods sinceE+j

ρ2 (x) =
∫ ζ

x
F̄(α0+α(x))δ,β (L − w)

∞
∑

k=1

f(α0+α(x))kδ,β (w− x) dw, (12)

• ρ3 (x) denotes the conditional probability of a PR after one inspection period sinceE+j

ρ3 (x) = F̄(α0+α(x))δ,β (ζ − x) , (13)

• ρ4 (x) denotes the conditional probability of a PR after multiple inspection periods sinceE+j

ρ4 (x) =
∫ ζ

x
F̄(α0+α(x))δ,β (ζ − w)

∞
∑

k=1

f(α0+α(x))kδ,β (w− x) dw, (14)

• p1 (y | x) stands for the conditional pdf of a PPR after one inspection period sinceE+j , with x ∈
[

0, η),

p1 (y | x) =
∫ L

ζ

g (y | x, r) f(α0+α(x))δ,β (r − x) dr, (15)

• p2 (y | x) stands for the conditional pdf of a PPR after multiple inspection periods sinceE+j

p2 (y | x) =
∫ ζ

x

(∫ L

ζ

g (y | x, z) f(α0+α(x))δ,β (z− w) dz

) ∞
∑

k=1

f(α0+α(x))kδ,β (w− x) dw, (16)

• p3 (y | x) stands for the conditional pdf of a PPR after one inspection period sinceE+j , with x ∈
[

η, ζ),

p3 (y | x) =
∫ L

x
g (y | x, r) f(α0+α(x))δ,β (r − x) dr, (17)

in which f(α0+α(x))·(·),β (·) is given from (2) andF̄(α0+α(x))δ,β (·) is derived from (3).

We note that the expression ofP (x, dy) consists of both the dirac part and continuous part. The magnitude of the Dirac

measure located at 0 represents the probability of a replacement (either corrective or preventive) done during a Markov
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renewal cycle. Besides,P (x, dy) does not impacted by the maintenance duration, in which the system deterioration keeps

unchanged.

3.2.2. Solution for the stationary lawπ (dy)

As the expression ofP (x, dy), the stationary lawπ (dy) is also a convex combination of Dirac mass function and a

continuous pdf. Appendix B gives the mathematical expression ofπ (dy) as follows.

1. Whenζ < η,

π (dy) = a · δ0 (dy) + (1− a) · b1 (y) · 1{0<y<ζ}dy+ (1− a) · b2 (y) · 1{ζ≤y<η}dy+ (1− a) · b3 (y) · 1{η≤y<L}dy, (18)

where

a =
1

1+
∫ ζ

0
B1 (y) dy+

∫ η

ζ
B2 (y) dy+

∫ L

η
B3 (y) dy

, (19)

and

b1 (y) =
a

1− a
· B1 (y) , b2 (y) =

a
1− a

· B2 (y) , and b3 (y) =
a

1− a
· B3 (y) . (20)

B1 (y), B2 (y) andB3 (y) are computed by

• when 0< y < ζ,

B1 (y) = p1 (y | 0) + p2 (y | 0) +
∫ y

0
B1 (x) · (p1 (y | x) + p2 (y | x)) dx, (21)

• whenζ < y < η,

B2 (y) = p1 (y | 0) + p2 (y | 0) +
∫ ζ

0
B1 (x) · (p1 (y | x) + p2 (y | x)) dx+

∫ y

ζ

B2 (x) · p3 (y | x) dx, (22)

• whenη < y < L,

B3 (y) = p1 (y | 0) + p2 (y | 0) +
∫ ζ

0
B1 (x) · (p1 (y | x) + p2 (y | x)) dx+

∫ η

ζ

B2 (x) · p3 (y | x) dx, (23)

wherep1 (y | x), p2 (y | x) andp3 (y | x) are given from (15), (16) and (17).

2. Whenη ≤ ζ,

π (dy) = c · δ0 (dy) + (1− c) · d1 (y) · 1{0<y<η}dy+ (1− c) · d2 (y) · 1{η≤y<ζ}dy+ (1− c) · d3 (y) · 1{ζ≤y<L}dy, (24)

where

c =
1

1+
∫ η

0
D1 (y) dy+

∫ ζ

η
D3 (y) dy+

∫ L

ζ
D3 (y) dy

, (25)

and

d1 (y) =
c

1− c
· D1 (y) , d2 (y) =

c
1− c

· D2 (y) , and d3 (y) =
c

1− c
· D3 (y) . (26)

D1 (y), D2 (y) andD3 (y) are computed by

• when 0< y < η

D1 (y) = p1 (y | 0) + p2 (y | 0) +
∫ y

0
D1 (x) · (p1 (y | x) + p2 (y | x)) dx, (27)

• whenη < y < ζ

D2 (y) = p1 (y | 0) + p2 (y | 0) +
∫ η

0
D1 (x) · (p1 (y | x) + p2 (y | x)) dx, (28)
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• whenζ < y < L

D3 (y) = p1 (y | 0) + p2 (y | 0) +
∫ η

0
D1 (x) · (p1 (y | x) + p2 (y | x)) dx, (29)

wherep1 (y | x) andp2 (y | x) are given from (15) and (16).

Solving the non-homogeneous linear Volterra integral equations of the second kind (21), (22) and (27) allows to fully

deriveπ (dy). However, their analytical solutions are not easy to handle. To overcome this obstacle, theHeun’ s numerical

method(Kharab and Guenther, 2011, pages 334-335) is used to approximate the solution of (21), (22) and (27). Appendix

B.2 gives the detail of this numerical method.

4. Cost-based optimization of the condition-based maintained system

This section aims at optimizing the considered CBMS using the long-run maintenance cost rate (6). To this end, we

formulate a closed-form expression ofC∞ (δ, ζ, η) following (7). Next, we apply derivative free algorithms for black-

box optimization (e.g., generalized pattern search (Audetand Hare, 2017)) toC∞ (δ, ζ, η) to search the optimal decision

parameters
(

δopt, ζopt, ηopt

)

.

4.1. Maintenance cost rate evaluation

From the decision structure implemented in the considered CBMS, we can express the cumulative cost incurred in

the time interval [0, t] as

C (t) = Cr · Nr (t) +Cp · Np (t) +Cc · Nc (t) +Cm · Nm (t) +Cu · U (t) +Ci · I (t) , (30)

whereNr (t), Np (t), Nc (t) andNm (t) denote respectively the number of PPR, of PR, of CR, and of inspections in [0, t],

U (t) and I (t) stand for total duration of system unavailability and system inactivity in [0, t]. Using (7), we obtain the

expression ofC∞ (δ, ζ, η) as

C∞ (δ, ζ, η) =
Eπ

[

C
([

0+,E+1
])]

Eπ [∆E1]
= Cr ·

Eπ
[

Nr

([

0+,E+1
])]

Eπ [∆E1]
+Cp ·

Eπ
[

Np

([

0+,E+1
])]

Eπ [∆E1]
+

Cc ·
Eπ

[

Nc

([

0+,E+1
])]

Eπ [∆E1]
+Cm ·

Eπ
[

Nm

([

0+,E+1
])]

Eπ [∆E1]
+Cu ·

Eπ
[

U
([

0+,E+1
])]

Eπ [∆E1]
+Ci ·

Eπ
[

I
([

0+,E+1
])]

Eπ [∆E1]
. (31)

Since
[

0+,E+1
]

=
[

0+,S1
]

∪
[

S1,E+1
]

, whereS1 = δ · Nm

([

0+,E+1
])

, (31) can be rewritten as

C∞ (δ, ζ, η) =
1

δ · Eπ
[

Nm

([

0+,E+1
])]

+ Eπ
[

I
([

0+,E+1
])] ·

(

Cr · Eπ
[

Nr

([

0+,E+1
])]

+Cp · Eπ
[

Np

([

0+,E+1
])]

+Cc · Eπ
[

Nc

([

0+,E+1
])]

+Cm · Eπ
[

Nm

([

0+,E+1
])]

+Cu · Eπ
[

U
([

0+,E+1
])]

+Ci · Eπ
[

I
([

0+,E+1
])])

. (32)

Hereinafter, we analyze all the possible maintenance scenarios on the first Markov renewal cycle
[

0+,E+1
]

, and thence

we derive mathematical expressions ofEπ
[

Nr

([

0+,E+1
])]

, Eπ
[

Np

([

0+,E+1
])]

, Eπ
[

Nc

([

0+,E+1
])]

, Eπ
[

Nm

([

0+,E+1
])]

,

Eπ
[

U
([

0+,E+1
])]

andEπ
[

I
([

0+,E+1
])]

. The exactness of the formulation is also justified by numerical experiments.

4.1.1. Possible maintenance scenarios on the first Markov renewal cycle

Let consider the Markov renewal cycle
[

0+,E+1
]

with X0+ = y, the decision structure of(δ, ζ, η) policy leads to

following possible maintenance scenarios.

1. Whenζ < η, then

(a) the system maintenance starts after one inspection period δ since 0+ (i.e.,S1 = δ) by

10



• scenario 1: a PPR with durationλ0 + λ (X0+ ,Xδ) if {0 ≤ X0+ < ζ ≤ Xδ < L} or {ζ ≤ X0+ < η,Xδ < L},

• scenario 2: a PR with durationλ0 if {η ≤ X0+ < Xδ < L},

• scenario 3: a CR with durationλ0 if {0 ≤ X0+ < L ≤ Xδ},

(b) the system maintenance starts after a multiple of inspection period(k+ 1) δ, k = 1, 2, . . ., since 0+ (i.e.,

S1 = (k+ 1) δ) by

• scenario 4: a PPR with durationλ0 + λ
(

X0+ ,X(k+1)δ
)

if
{

0 ≤ X0+ ≤ Xkδ < ζ ≤ X(k+1)δ < L
}

,

• scenario 5: a CR with durationλ0 if
{

0 ≤ X0+ ≤ Xkδ < ζ < L ≤ X(k+1)δ
}

.

2. Whenη ≤ ζ, then

(a) the system maintenance starts after one inspection period δ since 0+ (i.e.,S1 = δ) by

• scenario 6: a PPR with durationλ0 + λ (X0+ ,Xδ) if {0 ≤ X0+ < η ≤ ζ ≤ Xδ < L},

• scenario 7: a PR with durationλ0 if {η ≤ X0+ < ζ ≤ Xδ < L} or {ζ ≤ X0+ < Xδ < L},

• scenario 8: a CR with durationλ0 if {0 ≤ X0+ < L ≤ Xδ},

(b) the system maintenance starts after a multiple of inspection period(k+ 1) δ, k = 1, 2, . . ., since 0+ (i.e.,

S1 = (k+ 1) δ) by

• scenario 9: a PPR with durationλ0 + λ
(

X0+ ,X(k+1)δ
)

if
{

0 ≤ X0+ ≤ Xk·δ < ζ ≤ X(k+1)δ < L
}

• scenario 10: a PR with durationλ0 if
{

η ≤ X0+ < Xkδ < ζ ≤ X(k+1)δ < L
}

,

• scenario 11: a CR with durationλ0 if
{

0 ≤ X0+ < η,Xkδ < ζ < L ≤ X(k+1)δ
}

or
{

η ≤ X0+ < Xkδ < ζ < L ≤ X(k+1)δ
}

.

The above scenarios are the basis to compute the required expectations.

4.1.2. Expected number of preventive partial repairs over the first Markov renewal cycle

As shown in Appendix C, we can express the expected value ofNr

([

0+,E+1
])

with respect to the stationary lawπ as

1. whenζ < η,

Eπ
[

Nr

(

0+,E+1
)]

= a ·

















F̄α0δ,β (ζ) − F̄α0δ,β (L) +
∫ ζ

0

(

F̄α0δ,β (ζ − w) − F̄α0δ,β (L − w)
)

∞
∑

k=1

fα0kδ,β (w) dw

















+

(1− a) ·
∫ ζ

0

(

F̄(α0+α(y))δ,β (ζ − y) − F̄(α0+α(y))δ,β (L − y) +
∫ ζ

y

(

F̄(α0+α(y))δ,β (ζ − w) − F̄(α0+α(y))δ,β (L − w)
)

×

∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















b1 (y) dy+ (1− a) ·
∫ η

ζ

F(α0+α(y))δ,β (L − y) b2 (y) dy, (33)

wherea, b1 (y) andb2 (y) are given from (19) and (20);

2. whenη ≤ ζ,

Eπ
[

Nr

(

0+,E+1
)]

= c ·

















F̄α0δ,β (ζ) − F̄α0δ,β (L) +
∫ ζ

0

(

F̄α0δ,β (ζ − w) − F̄α0δ,β (L − w)
)

∞
∑

k=1

fα0kδ,β (w) dw

















+

(1− c) ·
∫ η

0

(

F̄(α0+α(y))δ,β (ζ − y) − F̄(α0+α(y))δ,β (L − y)+

∫ ζ

y

(

F̄(α0+α(y))δ,β (ζ − w) − F̄(α0+α(y))δ,β (L − w)
)

∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















d1 (y) dy, (34)

wherec andd1 (y) are given from (25) and (26).

4.1.3. Expected number of preventive replacements over thefirst Markov renewal cycle

As shown in Appendix D, the expected value ofNp

([

0+,E+1
])

with respect to the stationary lawπ is given by
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1. whenζ < η,

Eπ
[

Np

(

0+,E+1
)]

= (1− a) ·
∫ L

η

F(α0+α(y))δ,β (L − y) b3 (y) dy, (35)

wherea andb3 (y) are given from (19) and (20);

2. whenη ≤ ζ,

Eπ
[

Np

(

0+,E+1
)]

= (1− c) ·

(∫ ζ

η

(

F̄(α0+α(y))δ,β (ζ − y) − F̄(α0+α(y))δ,β (L − y)+

∫ ζ

y

(

F̄(α0+α(y))δ,β (ζ − w) − F̄(α0+α(y))δ,β (L − w)
)

∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















d2 (y) dy

+

∫ L

ζ

F(α0+α(y))δ,β (L − y) d3 (y) dy

)

, (36)

wherec, d2 (y) andd3 (y) are given from (25) and (26).

4.1.4. Expected number of corrective replacements over thefirst Markov renewal cycle

Appendix E gives the expected value ofNc

([

0+,E+1
])

with respect to the stationary lawπ as

1. whenζ < η,

Eπ
[

Nc

(

0+,E+1
)]

= a ·

















F̄α0δ,β (L) +
∫ ζ

0
F̄α0δ,β (L − w)

∞
∑

k=1

fα0kδ,β (w) dw

















+ (1− a)×

















∫ ζ

0

















F̄(α0+α(y))δ,β (L − y) +
∫ ζ

y
F̄(α0+α(y))δ,β (L − w)

∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















b1 (y) dy

+

∫ η

ζ

F̄(α0+α(y))δ,β (L − y) b2 (y) dy+
∫ L

η

F̄(α0+α(y))δ,β (L − y) b3 (y) dy

)

, (37)

wherea, b1 (y), b2 (y) andb3 (y) are given from (19) and (20);

2. whenη ≤ ζ,

Eπ
[

Nc

(

0+,E+1
)]

= c ·

















F̄α0δ,β (L) +
∫ ζ

0
F̄α0δ,β (L − w)

∞
∑

k=1

fα0kδ,β (w) dw

















+ (1− c)×

















∫ η

0

















F̄(α0+α(y))δ,β (L − y) +
∫ ζ

y
F̄(α0+α(y))δ,β (L − w)

∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















d1 (y) dy

+

∫ ζ

η

















F̄(α0+α(y))δ,β (L − y) +
∫ ζ

y
F̄(α0+α(y))δ,β (L − w)

∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















d2 (y) dy

+

∫ L

ζ

F̄(α0+α(y))δ,β (L − y) d3 (y) dy

)

, (38)

wherea, d1 (y), d2 (y) andd3 (y) are given from (25) and (26).

4.1.5. Expected number of inspections over the first Markov renewal cycle

Based on the expectations of the scenarios derived in Appendix C, Appendix D and Appendix E, the expected value

of Nm

([

0+,E+1
])

with respect to the stationary lawπ is obtained by
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1. whenζ < η,

Eπ
[

Nm

([

0+,E+1
])]

= a · F̄α0δ,β (ζ) + (1− a) ·

(∫ ζ

0
F̄(α0+α(y))δ,β (ζ − y) b1 (y) dy+

∫ η

ζ

b2 (y) dy+
∫ L

η

b3 (y) dy

)

+ a ·
∫ ζ

0
F̄α0δ,β (ζ − w)

















∞
∑

k=1

(k+ 1) fα0kδ,β (w)

















dw+ (1− a)×

∫ ζ

0

















∫ ζ

y
F̄(α0+α(y))δ,β (ζ − w)

















∞
∑

k=1

(k+ 1) f(α0+α(y))kδ,β (w− y)

















dw

















b1 (y) dy, (39)

wherea, b1 (y), b2 (y) andb3 (y) are given from (19) and (20);

2. whenη ≤ ζ,

Eπ
[

Nm

([

0+,E+1
])]

= c · F̄α0δ,β (ζ) + (1− c) ·

(∫ η

0
F̄(α0+α(y))δ,β (ζ − y) d1 (y) dy+

∫ ζ

η

F̄(α0+α(y))δ,β (ζ − y) d2 (y) dy+
∫ L

ζ

d3 (y) dy

)

+ c ·
∫ ζ

0
F̄α0δ,β (ζ − w)

















∞
∑

k=1

(k+ 1) fα0kδ,β (w)

















dw

+ (1− c) ·
∫ η

0

















∫ ζ

y
F̄(α0+α(y))δ,β (ζ − w)

















∞
∑

k=1

(k+ 1) f(α0+α(y))kδ,β (w− y)

















dw

















d1 (y) dy

+ (1− c) ·
∫ ζ

η

















∫ ζ

y
F̄(α0+α(y))δ,β (ζ − w)

















∞
∑

k=1

(k+ 1) f(α0+α(y))kδ,β (w− y)

















dw

















d2 (y) dy, (40)

wherea, d1 (y), d2 (y) andd3 (y) are given from (25) and (26).

4.1.6. Expected duration of the system unavailability overthe first Markov renewal cycle

Appendix F shows the expected value ofU
([

0+,E+1
])

with respect to the stationary lawπ as

1. whenζ < η,

Eπ
[

U
([

0+,E+1
])]

=

∫ δ

0

















a ·

















F̄α0t,β (L) +
∫ ζ

0
F̄α0t,β (L − w)

∞
∑

k=1

fα0kδ,β (w) dw

















+ (1− a) ·

















∫ ζ

0

















F̄(α0+α(y))t,β (L − y) +
∫ ζ

y
F̄(α0+α(y))t,β (L − w)

∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















b1 (y) dy

+

∫ η

ζ

F̄(α0+α(y))t,β (L − y) b2 (y) dy+
∫ L

η

F̄(α0+α(y))t,β (L − y) b3 (y) dy

))

dt, (41)

wherea, b1 (y), b2 (y) andb3 (y) are given from (19) and (20);

2. whenη ≤ ζ,

Eπ
[

U
([

0+,E+1
])]

=

∫ δ

0

















c ·

















F̄α0t,β (L) +
∫ ζ

0
F̄α0t,β (L − w)

∞
∑

k=1

fα0kδ,β (w) dw

















+ (1− c) ·

















∫ η

0

















F̄(α0+α(y))t,β (L − y) +
∫ ζ

y
F̄(α0+α(y))t,β (L − w)

∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















d1 (y) dy

+

∫ ζ

η

















F̄(α0+α(y))t,β (L − y) +
∫ ζ

y
F̄(α0+α(y))t,β (L − w)

∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















d2 (y) dy

+

∫ L

ζ

F̄(α0+α(y))t,β (L − y) d3 (y) dy

))

dt, (42)

wherea, d1 (y), d2 (y) andd3 (y) are given from (25) and (26).

13



4.1.7. Expected duration of the system inactivity over the first Markov renewal cycle

As proved in Appendix G, the expected duration of the system inactivity Eπ
[

I
([

0+,E+1
])]

can be computed by

Eπ
[

I
([

0+,E+1
])]

= λ0 + Eπ
[

I1

([

0+,E+1
])]

, (43)

in which

1. whenζ < η,

Eπ
[

I1

([

0+,E+1
])]

= a ·

















∫ L

ζ

λ (0,w) fα0δ,β (w) dw+
∫ ζ

0

(∫ L

ζ

λ (0, v) fα0δ,β (v− w) dv

) ∞
∑

k=1

fα0kδ,β (w) dw

















+ (1− a)

×

∫ ζ

0

















∫ L

ζ

λ (y,w) f(α0+α(y))δ,β (w− y) dw+
∫ ζ

y

(∫ L

ζ

λ (y, v) f(α0+α(y))δ,β (v− w) dv

) ∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















× b1 (y) dy+ (1− a) ·
∫ η

ζ

(∫ L

y
λ (y,w) f(α0+α(y))δ,β (w− y) dw

)

b2 (y) dy, (44)

wherea, b1 (y) andb2 (y) are given from (19) and (20);

2. whenη ≤ ζ,

Eπ
[

I1

([

0+,E+1
])]

= c ·

















∫ L

ζ

λ (0,w) fα0δ,β (w) dw+
∫ ζ

0

(∫ L

ζ

λ (0, v) fα0δ,β (v− w) dv

) ∞
∑

k=1

fα0kδ,β (w) dw

















+ (1− c)

×

∫ η

0

















∫ L

ζ

λ (y,w) f(α0+α(y))δ,β (w− y) dw+
∫ ζ

y

(∫ L

ζ

λ (y, v) f(α0+α(y))δ,β (v− w) dv

) ∞
∑

k=1

f(α0+α(y))kδ,β (w− y) dw

















× d1 (y) dy, (45)

wherec andd1 (y) are given from (25) and (26).

4.1.8. Maintenance cost model validation

To validate the above mathematical formulation, we effectuate numerical comparisons between the results given by

the numerical computation and the Monte Carlo simulation ofEπ
[

Nr

([

0+,E+1
])]

, Eπ
[

Np

([

0+,E+1
])]

, Eπ
[

Nc

([

0+,E+1
])]

,

Eπ
[

Nm

(

0+,E+1
)]

, Eπ
[

U
(

0+,E+1
)]

, Eπ
[

I
(

0+,E+1
)]

, as well as ofC∞ (δ, ζ, η). For the numerical computation, we use the

well-known trapezoidal rule to approximate integrals in the considered expectations. We also propose a simple way to

derive the simulated results by Monte Carlo approach in Appendix H. In the following, an illustration is given on the

basis of the maintained system defined by the set of parameters L = 15, α0 = 1, α
(

XE+j

)

= 0.1 · XE+j
, β = 1, λ0 = 1,

λ

(

XE+j
,XS j

)

= 0.1 · XE+j
+ 0.2 · XS j , and a continuous uniform pdf forg (y | x, r), under two configurations of the(δ, ζ, η)

policy

• configuration 1(ζ < η): δ = 4, ζ = 7, η = 11,

• configuration 2(η ≤ ζ): δ = 4, η = 7, ζ = 11.

The set of maintenance costs is chosen asCm = 5,Cr = 10,Cp = 100,Cc = 150,Ci = 5 andCu = 25. The durationT for

Monte Carlo simulation (see Appendix H) is 108 time units. The results are shown as in Table 1. The almost identical

results given by both the approaches justify the correctness of the developed mathematical cost model.

4.2. Optimum existence and searching

Optimizing the(δ, ζ, η) policy is to seek the triplet of decision parameters
(

δopt, ζopt, ηopt

)

that minimizesC∞ (δ, ζ, η)

C∞
(

δopt, ζopt, ηopt

)

= min
(δ,ζ,η)

{C∞ (δ, ζ, η) , δ > 0, 0 ≤ ζ ≤ L, 0 ≤ η ≤ L} . (46)
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Config. Approach Eπ [Nr ] Eπ
[

Np

]

Eπ [Nc] Eπ [Nm] Eπ [U] Eπ [I ] C∞ (δ, ζ, η)

1
Num. Comp. 0.7170 6.7549· 10−4 0.2823 1.4897 0.4504 2.7185 9.2502

M.C. Sim. 0.7175 6.6489· 10−4 0.2819 1.4898 0.4486 2.7199 9.2312

2
Num. Comp. 0.5451 0.0635 0.3914 2.3377 0.5876 2.4599 9.4366

M.C. Sim. 0.5458 0.0635 0.3907 2.3357 0.5851 2.4617 9.4227

Table 1: Results for validation the maintenance cost model

Analytical proof of optimum existence for the(δ, ζ, η) policy is unfeasible due to the complexity of the mathematical ex-

pression ofC∞ (δ, ζ, η). To remedy this obstacle, we propose observing the shapes ofC∞ (δ, ζ, η) whenδ, ζ andη vary in

a wide rank. Repeating observations for various configurations of system characteristics (i.e., for differentα0, α
(

XE+j

)

, β,

L, gXR+j
, λ0 andλ

(

XE+j
,S j

)

) and maintenance costs (i.e.,Cm, Cr , Cp, Cc, Ci andCu) allows us to confirm the existence of
(

δopt, ζopt, ηopt

)

. Even if this approach cannot cover all possible configurations, it is still an acceptable solution when an-

alytical approach is impossible. A general conclusion drawn from these observations is that each of decision parameters

δ, ζ andη has its own effect on the maintenance cost rate, and they have to be jointly optimized to achieve the best per-

formance for the(δ, ζ, η) policy. As an illustration, we sketch in Figure (3) the shapes ofC∞ (δ, ζ, η) for the same system

considered in the example of Subsection 4.1. The convex forms of C∞ (δ, ζ, η) affirm the existence of
(

δopt, ζopt, ηopt

)

.
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Figure 3: Shapes ofC∞ (δ, ζ, η)
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Figure 4: Optimization with Matlab’s patternsearch solver

The triplet
(

δopt, ζopt, ηopt

)

and the associated cost rateC∞
(

δopt, ζopt, ηopt

)

can be found by the generalized pattern search

algorithm (Audet and Hare, 2017). Indeed, continue with theabove example, we obtainδopt = 2.75,ζopt = 8.75,ηopt = 6

andC∞
(

δopt, ζopt, ηopt

)

= 8.2955 when applying thepatternsearchsolver of Matlab’s Global Optimization Toolbox to

(32) (see Figure (4)). The generalized pattern search algorithm allows to find quickly the optimal configuration of the

(δ, ζ, η) policy.

5. Numerical assessment of the condition-based maintained system

This section aims at using numerical experiments to confirm the effectiveness of the proposed CBMS, and to un-

derstand more deeply the impacts of the past-dependent PPR on the economic performance of the maintained system.

To this end, we perform comparative studies of optimal long-run cost rate between the considered system(δ, ζ, η) and

its two extreme cases (i.e., system with pure PR(δ, ζ, η = 0) (see e.g., (Huynh et al., 2011)), and system with pure PPR

(δ, ζ, η = L) (see e.g., (Meier-Hirmer et al., 2009))). Numerous experiments have been done for divers configurations

of system characteristics and maintenance costs. However,illustrations shown in this section are just given from the

maintained system characterized by

• a Gamma deterioration process with linear shape parameter HGP
(

α0 + α

(

XE+j

)

, β

)

= HGP
(

α0 + α1 · XE+j
, β

)

,

• a linear duration for PPRλ0 + λ

(

XE+j
,XS j

)

= λ0 + λ1 · XE+j
+ λ2 · XS j ,

• a continuous uniform pdf forg (y | x, r),

whereα0 = 1, β = 1, λ0 = 1, λ2 = 0.25, andL = 15. The applied maintenance costs areCm = 5, Cr = 10, Cc = 150,

Ci = 10 andCu = 25. The choice of these values are completely arbitrary. Thevalues of other parameters (i.e.,α1, λ1)

and maintenance cost (i.e.,Cp) will be stated latter depending on specific sensitivity studies.

5.1. Economic performance of the condition-based maintained system

The distinction in economic performance of the three considered maintained systems comes from the difference

between the PR costCp and the PPR costCr . Therefore, to see how good the system(δ, ζ, η) is, we vary the cost ratio
Cp

Cr
in a wide range (Cr has been already fixed), and compare its optimal long-run cost rates with the other systems. The

result shown in Figure 5 is obtained when fixingα1 = 0.1, λ1 = 0.25 and varying
Cp

Cr
from 3 to 15 with step 0.5.

The figure shows clearly that the system(δ, ζ, η) always saves more maintenance cost and returns to either thesystem

(δ, ζ, η = 0) or the system(δ, ζ, η = L) in worse cases. Indeed, it is equivalent to the former whenCp is relatively small,

and to the latter whenCp is very high. The system(δ, ζ, η) reaches its best profit at a medium value of the ratio
Cp

Cr
. From

the economic aspect, this result confirms that there is no risk in using the proposed CBMS compared to more classical

ones.
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5.2. Impacts of the past-dependent preventive partial repairs

To better understand the impacts of past-dependent PPR on the economic performance of the three maintained sys-

tems, we study separately howα1 andλ1 affect the evolution their optimal long-run maintenance cost rate. Consequently,

two following configurations have been considered

1. α1 is varied from 0 to 0.2 with step 0.025, andλ1 is fixed at 0,

2. α1 is fixed at 0, andλ1 is varied from 0 to 0.9 with step 0.1.

We note that only one impact of the past-dependent PPR (either on the system deterioration dynamics viaα1 or on the

repair duration viaλ1) is taken into account in each above configuration. The increasingα1 andλ1 imply the more and

more important impacts of the past-dependent PPR. The PR cost is assumed fixed atCp = 100. The results for the two

above configurations are reported in Figures 6a and 6b.
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Figure 6: Impacts of the past-dependent preventive partialrepairs

Obviously, the optimal long-run cost rate of the system(δ, ζ, η = 0) is constant for both the considered configurations,

because its maintenance decision structure is independentof PPR. Whereas, using the past-dependent partial repairs as

a preventive action, the system(δ, ζ, η) and the system(δ, ζ, η = L) incur higher maintenance cost due to the increasing

of α1 andλ1. However, looking at the growth of their optimal long-run cost rate, the former resists the negative effects

of the PPR much better than the latter. In other words, these negative effects can be significantly reduced if we combine

properly the PPR and the PR into a CBM decision rule.
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6. Conclusions and perspectives

The main focus of this paper is to model and evaluate the impacts of the past-dependent PPR on the economic perfor-

mance of a condition-based maintained deteriorating system. A complete procedure, including the system deterioration

modeling, the maintenance effects modeling, the elaboration of CBM decision rule, the formulation and optimization

of mathematical cost model, and the maintenance model assessment, has been performed. Numerous numerical experi-

ments confirm that the negative effects of the past-dependent PPR on the economic performance of the maintained system

are unavoidable, but can be significantly reduced by coordinating the PPR and the PR into a CBM decision rule. The

deterioration-based maintenance policy developed in thispaper could be a good candidate. In fact, there is no risk when

using the proposed CBMS, because it achieves at least the same cost-savings as the systems with pure PPR or with pure

PR.

Given encouraging theoretical results, our next work is to valid the proposed CBM model with real-world data.

A phase of data analysis, parameters estimation, and of models selection for system deterioration process and past-

dependent repairs will be implemented before going furtherwith the CBM decision rule. Currently, only the actual

system deterioration state is used to make a maintenance decision. Meanwhile, the growing development of prognostics

and health management techniques allows us to further access the information about the future system deterioration state

(Lee et al., 2014). So, one of our perspectives is to study howthis kind of information can be integrated in the CBM

model to enable maintenance cost reduction. Using a prognostic-based inspection scheme instead of a periodic one could

be an improved idea for the considered CBMS. Another perspective is to develop joint models of CBM and spare parts

ordering for the considered system. This will remedy a strong assumption in the present CBMS that spare parts are

always available for replacement actions.
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