Skip to Main content Skip to Navigation
Conference papers

QoS support in WMNs using temporal resource reservation and traffic regulation schemes

Abstract : Wireless mesh networks (WMNs) have recently emerged as a promising technology for next-generation of wireless communications. In WMNs, admission control is deployed to control traffic loads and to prevent the wireless mesh backbone from being overloaded. Existing admission control protocols could be classified as either stateful or stateless approaches, based on network state information. Both the approaches have their limitations; the stateful models suffer from the scalability issue, while the stateless ones have the false admission problem. This paper introduces a hybrid admission control model for WMNs, based on a temporal resource reservation and three traffic regulation schemes. In particular, we propose an analytical model to compute the appropriate regulation ratio for accepted flows and to guarantee that the congestion at intermediate nodes does not exceed a threshold value. In our model, the congested node may specify the moment of session re-establishment, besides of the new rate at which the session should transmit its data packets. Using extensive simulations, we demonstrate that our model achieves high resource utilization by computing new sessions rates in a dynamic traffic-load environment, and by satisfying the quality of service (QoS) constraints in terms of delay and packets loss.
Document type :
Conference papers
Complete list of metadata
Contributor : Jean-Baptiste VU VAN Connect in order to contact the contributor
Submitted on : Friday, August 30, 2019 - 10:06:16 AM
Last modification on : Sunday, June 26, 2022 - 4:36:51 AM


  • HAL Id : hal-02274636, version 1



Ali El Masri, Lyes Khoukhi, Ahmad Sardouk, Dominique Gaïti. QoS support in WMNs using temporal resource reservation and traffic regulation schemes. 2012 IEEE Consumer Communications and Networking Conference (CCNC), Jan 2012, Las Vegas, United States. pp.132-137. ⟨hal-02274636⟩



Record views